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ABSTRACT 

 

 Small changes to a design can have large and unexpected effects on a 

building’s performance.  Unfortunately, analysis of a design to uncover the unintended 

consequences of early decisions often takes place late in the design process, if at all.  

This is especially true for thermal analysis predicting comfort conditions and energy 

consumption in the building.  Ignoring thermal problems or fixing them in late design 

stages are expensive alternatives to preventing them with early analysis. 

 Architecture is a complex adaptive system, where many parameters contribute 

to the overall fitness of a building.  Some combinations of design elements offer more 

benefit than others.  In complex adaptive systems, improvement happens through an 

evolutionary process.  This iterative cycle of variation and selection occurs naturally 

when architects refine their designs.  Using a parametric model, the evolutionary 

process can be sped up by a computer, allowing many more variants and evaluation 

criteria to be considered.  Tools such as genetic algorithms can suggest creative 

solutions for design challenges that are too complex to be solved by human intuition. 

 The phenotype in this investigation is a house envelope built on a nine-square 

grid.  Each square of the three-by-three grid contains a thermal zone whose nine 

parameters determine its height, roof slope, materials, and porosity.  A deterministic 

crowding algorithm is used to minimize the house’s energy requirements for heating, 

cooling, and lighting.  In the space of fifty generations, the algorithm produces 

significant energy reductions when tested in a number of climates.  At the same time, 

it generates a diverse population of options for further development by an architect. 

 Since the computer is unaware of normative building typologies for sustainable 

design, the forms it discovers are unique and unexpected.  Three particularly creative 

solutions found by the algorithm are adapted into schematic designs.  By assigning 



   

rooms with matching size and material needs to each zone, the resulting designs take 

advantage of the efficient forms found by the algorithm.  These schematic designs 

look quite different from typical sustainable houses; in some cases they incorporate 

elements that seem ill-advised from a thermal perspective.  Clever adaptations still 

allow them to perform much better than the average house. 

 Genetic algorithms can provide the architect with feedback on design decisions 

as they are made.  This feedback is not just validation of an idea, but a suggested 

course of action.  As computational speeds increase, these algorithms will become 

more useful as they conduct larger searches with more evaluation criteria.  Architects 

who use genetic algorithms will have a diverse set of tested options at their disposal 

early in the design process. 
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PREFACE 

 

 In my first design studio, my professor allowed us to sprinkle anti-gravity 

powder on our models if our designs could not be practically built.  For some students, 

this freedom from the constraints of physics was liberating.  For myself, an 

engineering student at the time, the idea that gravity could be ignored was not only 

absurd but also counterproductive.  Constraints are the bread and butter of 

engineering.  They separate practical invention from fantasy.  Engineers are trained to 

optimize a design to work under whatever constraints they are given. 

 Considering how closely architecture and structural engineering are related, I 

am struck by the differences between the two disciplines.  My studio critics 

occasionally tell me that I consider too much information.  It puzzles me that while 

these professors hold the work of engineers in high esteem, they cannot accept 

optimization as a driving force for design.  To them, it is a question of authorship.  If a 

design is subjected to many goals and constraints, does it really represent the creativity 

of its designer, or does it become a product of formulas? 

 I see constraints as creative opportunities.  The more a designer constrains 

himself, the more creative he must be to achieve his own goals.  In my studios, I 

rebelled against simplicity.  I believed that if used properly, engineering methods 

would reliably lead to “elegant” solutions to complicated architectural problems. 

 Sanford Kwinter told me that my focus on engineering was too narrow and 

turned my attention to complexity theory.  This line of inquiry eventually led me to 

discover John Holland, Stuart Kauffman, and other pioneers of complex adaptive 

systems and genetic algorithms.  Around the same time, and quite by accident, I came 

across Eric Beinhocker’s The Origin of Wealth.  While other authors look to biology 

for examples of complex adaptive systems, Beinhocker finds complexity theory in the 
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workings of the economy.  The goods and services that evolve in a growing economy 

include the products of engineers.  Moreover, the complex economic and social web 

that produces all the variety of engineered form also creates all of the world’s 

architectural variety.  It is time for someone to describe architecture in the same way 

that Beinhocker describes the economy. 

 This thesis discusses architecture as a complex adaptive system.  It is written 

for an audience that has some familiarity with architecture, though not with 

complexity theory.  This is not an in-depth discussion of complex adaptive systems – 

interested readers are directed to the references at the end.  This is also not a proposal 

to design a specific building, as many architectural theses are.  My aim is to show that 

creative and significant optimization is possible in architecture because it is a complex 

adaptive system. 
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CHAPTER 1

COMPLEX ADAPTIVE SYSTEMS

Complexity is a deep property of a system, whereas complication is not.  

A complex system dies when an element is removed, but complicated 

ones continue to live on, albeit slightly compromised.  Removing a seat 

from a car makes it less complicated; removing the timing belt makes it 

less complex (and useless).  Complicated worlds are reducible, whereas 

complex ones are not.

	 When a scientist faces a complicated world, traditional tools 

that rely on reducing the system to its atomic elements allow us 

to gain insight.  Unfortunately, using the same tools to understand 

complex worlds fails, because it becomes impossible to reduce the 

system without killing it.  The ability to collect and pin to a board all 

of the insects that live in the garden does little to lend insight into the 

ecosystem contained therein.

John Miller and Scott Page, 2007

1.1  The Challenge of Optimization

	 An architect designs a housing development of square one-room buildings, 

each with two glazed walls.  Her first buildings have been built, and more are planned.  

While the project receives favorable press in architectural circles, residents are 

complaining of high heating bills.  The developer asks the architect to alter the design 

of the remaining buildings to save energy.  The architect does not want to make major 

changes to a design that already has many good features, but she is willing to consider 

rotating the buildings on the site or changing their roof slopes.  Not knowing how her 
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changes will affect the design’s heating load, she tests several options with thermal 

analysis software.

	 First, the architect rotates the design a quarter turn counterclockwise.  The 

simulation results tell her that the building now performs worse than before.  After 

undoing this first change, she flattens the slope of the roof, and the heating load drops 

considerably.  She does not try rotating the building counterclockwise again now that 

she has improved the roof slope.  Her first test suggested that this would be a waste of 

time.  Were she to try it, though, she would find it to be the best option yet.  There is 

a complex, non-linear relationship between rotation, roof slope, and heating load that 

the architect’s linear steps could not uncover.
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Figure 1.1.1  The digital model of a square 
one-room building can be manipulated by 
changing its roof slope or rotating it in plan.

Figure 1.1.2  Every change to the one-room building model has an effect on its 
performance.  The effect is more than the sum of its parts.
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	 Complex relationships are difficult to understand, even when only a few 

parameters are involved.  Architects generally prefer to examine one parameter at a 

time with the goal of improving a single aspect of a building.  Analysis of a design 

in order to uncover the unintended consequences of early design decisions often 

takes place late in the design process, if at all.  This is especially true for thermal 

analysis that predicts comfort conditions and energy consumption.  In 2008, only 

39% of architects reported that they usually received feedback from thermal analysis.�  

Ignoring thermal problems or fixing them in late design stages are expensive 

alternatives to preventing them with early analysis.

	 While designers usually avoid complexity, they can also take advantage of 

it.  This thesis frames architecture as a complex adaptive system and shows how 

the tools that scientists use to understand complexity can advance a design.  Tools 

called genetic algorithms analyze many properties of the design simultaneously and 

suggest variations that yield better performance.  In the investigation reported here, 

genetic algorithms produce significant optimization improvement in an architect’s 

parametric building model.  They also provide a diverse set of solutions for continued 

development by the architect.

	 This chapter will describe the properties of complex adaptive systems in more 

detail and identify where those properties appear in architecture.  Complex adaptive 

systems are made up of many interacting components.  In buildings, each design 

change affects the building’s overall performance in many ways, some positively and 

some adversely.  This thesis will focus specifically on how design decisions affect the 

thermal performance and energy consumption of buildings.  However, many other 

factors can also be considered, including aesthetics, circulation, structure, lighting, and 

the ability of occupants to carry out specific tasks.

�	  Autodesk 21
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1.2  Complexity

	 Complexity is found in many places.  Ecosystems are vast webs of complexly 

interconnected species.  The economy is a complex network of transactions involving 

goods and services.  Societies are complex organizations of human beings who 

interact with each other.  Complex systems tend to give rise to one another and to be 

made up of smaller complex systems.�  Since economic trade is a social interaction, 

and food and livestock are economic goods, it gets difficult to tell where one complex 

system ends and another begins.

	 Any complex system – any system for that matter – is a collection of 

interacting parts or particles.�  Since the Enlightenment, scientists have studied these 

parts and particles in hopes of finding the natural laws that govern the larger systems.  

This reductionist view of the universe has been largely successful; it has discovered 

ever-smaller components of the cells that make up organisms and the particles that 

make up atoms.  Despite this success, starting in the 1970’s, scientists like physicist 

Philip Anderson became dissatisfied with reductionism: 

The ability to reduce everything to simple fundamental laws does not 

imply the ability to start from those laws and reconstruct the universe.  

In fact, the more the elementary particle physicists tell us about the 

nature of the fundamental laws, the less relevance they seem to have to 

the very real problems of the rest of science, much less society.�

Anderson’s now classic example of reductionism’s inability to grasp complexity is a 

collection of water molecules.

�	  Gell-Mann 369
�	  Beinhocker 18
�	  Quoted in Waldrop 81
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There’s nothing very complicated about a water molecule:  it’s just one 

big oxygen atom with two little hydrogen atoms stuck to it like Mickey 

Mouse ears.  Its behavior is governed by well-understood equations of 

atomic physics.  But now put a few zillion of those molecules together 

in the same pot.  Suddenly you’ve got a substance that shimmers and 

gurgles and sloshes.  Those zillions of molecules have collectively 

acquired a property, liquidity, that none of them possesses alone.  In 

fact, unless you know precisely where and how to look for it, there’s 

nothing in those well-understood equations of atomic physics that even 

hints at such a property.�

Liquidity is an emergent property of a system of water molecules.  Other properties, 

such as freezing, boiling, and the formation of whirlpools, clouds, and snowflakes, are 

also emergent; they do not exist at the level of the water molecule.

	 Now the mistake made by the architect in the first section becomes clear.  She 

reduced her one-room building design into two separate problems – rotation and roof 

slope – and ignored any interaction that might occur between these variables.  Heating 

load and energy consumption are not results of a single design decision.  Rather, they 

are emergent properties of the system of components that make up a building and its 

environment.

1.3  Adaptation

	 Systems are either open or closed.  A closed system receives no mass or energy 

from the outside universe.  Its components eventually reach an equilibrium state, 

like a pool of water left in a closed container or an ecosystem deprived of sunlight.  

�	  Waldrop 82
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Removing one component of a system that is closed will quickly send it to a new static 

equilibrium state.�  According to John Holland, the father of the genetic algorithm, “if 

the system ever does reach equilibrium, it isn’t just stable.  It’s dead.”�

	 Complex adaptive systems are open systems.  Open systems receive energy 

and mass from outside, so they never have a chance to reach equilibrium.  These 

systems are dynamic, rather than static.  At their most basic level, complex adaptive 

systems are systems of energetic flows.�  In the ecosystem, energy is transferred 

through the cycling of nutrients, water, and air.  Genetic material passing from a parent 

to its offspring is energy in the form of information.  In the economy, the transfer of 

goods and services constitutes a flow of energy.

	 A building is an open system.  During construction, materials flow into a site 

along with information in plans from architects and contractors.  Finished buildings 

take in energy from sunlight, air ventilation, and utilities such as electricity, natural 

gas, and water.  The daily traffic of occupants is another dynamic flow fundamental 

to architecture.  If a building is boarded up and its utilities are shut off, it ceases to 

exchange energy with its environment and becomes a closed system.  Without the 

input of energy, buildings give in to entropy and crumble.

	 Likewise, architecture as a profession is an open system.  Energy flows through 

architecture not in the form of sunlight, but as information through the exchange of 

ideas and drawings.  Architecture does not settle on one style as an equilibrium form 

of expression.  Rather, a continuous influx of new technologies and new practitioners 

puts the profession in a constant state of change.

	 Adaptation occurs when a change to an open system creates new patterns 

of energy and information flow.  It is the emergent result of many new interactions 

�	  Miller 9
�	  Quoted in Waldrop 147
�	  Kwinter 59
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between the parts and particles that make up the system.�  A change to one component 

of a complex system is all it takes to create entirely new patterns of interaction 

everywhere.  Jim Drake and Stuart Kauffman call this the Humpty Dumpty effect.  

Remove a species from an ecosystem and the system will be thrown into chaotic 

disequilibrium as populations of other species rise and fall, having gained or lost 

predators or prey.  Reintroduce that species and the ecosystem does not return to 

its original state but rather finds a new state, possibly sending other species into 

extinction.10

	 Adaptation to change is not unique to ecosystems.  Imagine removing some 

good, say the can opener, from the world’s economy.  Manufacturers of canned food 

suddenly find no demand for their products, while bagged and lidded foods gain 

popularity.  Recipes that call for no-longer-accessible canned items go out of favor.  

Restaurants develop new menus, and some go out of business.  Agricultural production 

gradually shifts to meet changing demands.  Eventually, new inventions replace the 

can and can opener, but eating and buying habits have already changed.  In short, the 

economy adapts to meet a new set of internally imposed constraints.

	 A sudden change to a small part of a complex adaptive system results in a burst 

of adaptations.  These moments when everything changes have a different name in 

each field that studies complex adaptive systems.  They are punctuations for biologists, 

singularities for mathematicians, hinge points for archeologists, and for physicists they 

are phase transitions.11

	 Architecture is complex adaptive system both at the level of the building and 

as a system of design production.  A change to one building component can have 

numerous unexpected effects on other building components and systems.  Through 

�	  Beinhocker 18
10	 Lewin 125
11	 Lewin 20
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the design process, the architect adapts a building’s design to meet certain needs, and 

each change alters the building’s ability to meet other needs.  Even after a design is 

solidified in one building, architects copy and adapt its pieces for new projects.  Over 

time, successful new design components contribute to the development of architectural 

styles.  Phase transitions occur when lighter, more durable, cheaper, or trendier 

building materials hit the market or as social tastes and expectations of architecture 

change.  The growing interest in sustainability that caused, among other things, the 

writing of this thesis is no doubt the result of a phase change that is currently sending 

ripples throughout the architectural world.

	 The next two chapters give a more detailed account of how change occurs in 

complex adaptive systems.  They show that adaptive mechanisms from other complex 

adaptive systems work in architecture as well.  Chapters four, five, and six discuss the 

application of one mechanism, a genetic algorithm, to an architectural problem that 

serves as a test case.  The final chapter comments on further applications of complex 

adaptive systems in architecture.
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Chapter 2

THE SHAPE OF SEARCH SPACE

The image of organisms striving to climb up local fitness peaks in this 

evolutionary landscape, which is constantly changing as a result of their 

own efforts so that they have to keep running just to stay in the same 

place, fitness-wise, provides a dramatic metaphor of life as a continuous 

struggle to improve merely to survive.  This is sometimes seen as 

progress.

Brian Goodwin, 1994

2.1  The Air-Conditioned Box

	 Return for a moment to the example from the first chapter.  The architect still 

needs to reduce the heating, ventilation, and air-conditioning (HVAC) load in her one-

room buildings.  She decides to test the spectrum of possible design changes more 

thoroughly in order to find an optimal roof slope and angle of rotation on the site.

	 First she runs simulations to test the effect of changing one building’s roof 

slope.  Starting from the initial 50% slope, she reduces the slope by 2% for each test.  

She keeps all other variables constant, including the rotation angle of the building, 

which is currently 170°.  From these tests, she finds that a suitably low HVAC load 

occurs when the roof slope is set to 10%.

	 Having chosen the roof slope, the architect then runs a series of tests using 

various rotation angles.  For each test, she rotates the building 10° counterclockwise 

on the site until it has completed a full revolution.  Again she keeps all other variables 

constant, including the roof slope which is now 10%.  She finds that the smallest 

HVAC load occurs when the building is rotated near 270°.  This comes as a surprise 
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Figure 2.1.1  Linear optimization steps do not always lead to the best solution in 
multi-variable problems.  Here, the effect of changing the slope at a given rotation 
angle cannot be predicted from data taken at a different rotation angle.
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because in her earlier haphazard tests, the building faired quite poorly when she 

rotated it a quarter turn to 270°.  She runs another set of tests, this time keeping the 

rotation constant at 270° and varying the roof slope.  Sure enough, at this rotation 

angle, steeper roof slopes produce very high HVAC loads.

	 This is perplexing for the architect.  If the test results at the first rotation angle 

do not predict the trends in HVAC load at other rotation angles, then she has no reason 

to believe that she has found an optimal solution.  Instead, she must test every possible 

combination of rotation and roof slope to be sure that she has found the best one.  In 

a time-consuming series of trials, she tests no less than 936 variations on her original 

design.  Finally, she finds with absolute certainty that the best design has a roof slope 

of 14% and is oriented at 100° on the site.

Figure 2.1.2  Plotting the HVAC load for each combination of rotation and slope 
reveals a complex fitness landscape.
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2.2  Parameter Space

	 The first chapter of this thesis showed that complex adaptive systems such as 

architecture adapt to new conditions as long as they receive energy and information.  

Now it is time for a deeper look at how that change is possible, and how it can be 

beneficial.

	 The one-room building in the previous example is part of a complex system 

with two parameters (neglecting the climate variables used to run the simulation).  The 

architect’s model of the building is a parametric model, meaning that she can generate 

the 936 geometric variations of her initial design by adjusting the values of the two 

parameters.  If these parameters are represented by the x- and y-axes of a Cartesian 

graph, then every possible design variant corresponds to a single point on the graph.  

The graph is a two-dimensional parameter space, or search space.

	 Any object with multiple parameters can be represented in a search space.  One 

of these hypothetical spaces contains the parts and particles of any complex system.  

In biology, each parameter, or axis in the search space, represents the variation found 

in a single gene.12  Individuals within a species differ from each other by more than 

two genes, so another dimension is added to the search space for each additional 

gene.  As more and more genes are brought into consideration, the search space 

grows to encompass not just one species, but groups of species related by evolution, 

and potentially an entire ecosystem.  The number of dimensions in the search space 

quickly surpasses human comprehension, but the principle remains the same.  For the 

purpose of understanding complex adaptive systems, it is sufficient to visualize search 

space with two parameters.

	 The econosphere can be described in much the same way as the biosphere.  A 

particular good, a brand of can opener for instance, occupies a point in a search space 

12	 Wright 357
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of technological products.  Various axes in this multi-dimensional space describe the 

length of the handle, the thickness of ergonomic grips, the diameter of the cutting 

blade, the spacing between it and the gripping gear, and the presence of a bottle opener 

on the side.  Within the entire search space are many varieties of can opener.  Some 

of the devices may fail to work due to one parameter being too far from the norm; 

many of the possible can openers have never been produced in reality.  Some points 

lying farther away represent electrical can openers.  Farther away still, yet in the same 

search space, are the cans they open.

	 Because variation exists within man-made objects, these pieces of technology 

can evolve.  It is easy to find relationships between similar products that copy 

biological evolution.

We can see the same evolutionary patterns in generations of more 

modern technologies, such as automobiles progressing from the Model 

T to a modern car jammed with microprocessors, or mobile phones 

progressing from suitcase size to “so small I forgot I had it in my 

pocket” size.  One can also see relationships between technologies 

that look very much like speciation – the airplane is related to hot-air 

balloons, dirigibles, and hang gliders in a sort of phylum of artifacts for 

flying.13

The terms that describe search space often reference their biological analogs.  Each 

parameter, or dimension of the space, is a gene.  The value taken by a gene at a given 

point in search space is an allele.  The complete list of alleles at a point in search space 

is a genotype, and the corresponding physical object is its phenotype.

13	 Beinhocker 243
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2.3  Fitness Landscapes

	 Jorge Luis Borges imagines a library containing a vast (but not infinite) 

collection of books, each differing from the next by just one letter.  The library’s 

“shelves register all the possible combinations of the twenty-odd orthographical 

symbols . . . :  in other words, all that is given to express, in all languages.”14  Of 

course, all but a very few of the books contain pure gibberish.  Yet within the library 

are rare books containing a recognizable word or even a lucid sentence.  If the library 

is ordered and spread out over a single floor, these intelligible books stand out as 

clusters, and within each cluster is one fully readable book.  One cluster even contains 

this thesis.

	 In complex adaptive systems, it is generally expected that some combinations 

of alleles will exhibit more desirable emergent properties than others.  In Borges’ 

library, this desirable property might be “meaning.”  For technologies in the 

econosphere, it may be utility.  In biology, desirable traits are those that help 

an organism to survive and reproduce.  Genotypes that possess these beneficial 

combinations are termed fit.

	 When the architect graphs the HVAC load for each variant of her design, she 

creates a fitness landscape.  The elevation of each point in the landscape corresponds 

to its fitness.  In her case, the more fit design alternatives occupy valleys, where 

the HVAC load is smallest.  Conventions for relating elevation to fitness vary by 

discipline.  In computer science, physics, and thermodynamics, smaller numbers 

indicate better fitness.  Biologists and economists represent fit genotypes with hills.  

Since the architectural examples in this thesis deal with energy, they will use the 

physicist’s convention.

14	 Borges 54
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	 The concept of the fitness landscape is useful for understanding the behavior of 

complex adaptive systems.  The hills (representing good fitness) of a biological fitness 

landscape correspond to the ecological niches within an ecosystem.  In the economic 

fitness landscape, the can opener occupies one hill, and the electric can opener 

occupies another.  Points in the valley between them represent less successful and 

unmarketable variants and hybrids of the two.  In both cases, evolution pushes species 

or technologies from lower to higher points on the landscape.  The next chapter will 

describe exactly how this occurs.

	 In the mean time, it is useful to discuss the shape of fitness landscapes in more 

detail.  The simplest landscape has just one peak.  All other parts of the landscape 

slope toward this point of maximum fitness, the global optimum.  Sewall Wright, an 

evolutionary biologist and the first to describe fitness landscapes, noted that under 

such simple conditions, “a species whose individuals are clustered about some 

combination other than the highest would move up the steepest gradient toward the 

peak, and having reached it would remain unchanged.”15  No complex system is this 

simple, though.  An ecosystem with one fitness peak would have room for only one 

species.  An economy with a single peak could produce only one good.  Instead, 

Wright goes on, “it may be taken as certain that there will be an enormous number of 

widely separated harmonious combinations” of alleles.16

	 The number of fitness peaks, or local optima, is a result of the number 

of connections that exist between genes.  In other words, it is a function of the 

complexity of the system.  In the single-peak case, the benefit obtained from a certain 

allele is unrelated to the value of any other parameter.

15	 Wright 357
16	 Wright 358
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Therefore, there is a special genotype having the fitter allele at each 

locus which is the global optimum genotype.  Furthermore, any other 

genotype, which must of course have lower fitness, can be sequentially 

changed to the globally optimal genotype by successive flipping of 

each gene which is in the less favored allele to the more favored allele.  

Therefore, any such suboptimal genotype lies on a connected pathway 

via fitter, one-mutant variants to the global optimum.17

This simple fitness landscape is very smooth, with no significant difference in fitness 

between neighboring points in the search space.  A completely smooth landscape is 

known as a correlated landscape.  It allows adaptation to occur, but since it lacks any 

connections between genes, it is not complex.

	 Now consider the opposite condition in which the amount of benefit obtained 

from each allele depends on all the other alleles present.  The condition in which one 

17	 Kauffman 45

Figure 2.3.1  A correlated fitness 
landscape has a single peak and smooth 
slope.  All points are similar in fitness to 
their neighbors.  Image from Beinhocker.
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gene modifies the effect of another is epistasis.  Synergistic epistasis exists when 

one allele increases the benefit received from another.  Antagonistic epistasis occurs 

when an allele diminishes the benefit received from another.  When “each gene is 

epistatically affected by all the remaining genes . . . the fitness value of one genotype 

gives no information about the fitness value of its one-mutant neighbors.”18  The 

resulting landscape is completely random and uncorrelated.  It is very complex, but the 

lack of order makes adaptation impossible.

	 As the number of epistatic relationships between genes increases from zero 

to the maximum, the fitness landscape becomes increasingly less smooth and more 

random.  Complex adaptive systems occur between these extremes, on rough-

correlated or rugged fitness landscapes.  These landscapes have multiple local optima, 

separated by a mixture of smooth terrain and sudden cliffs.  The existence of multiple 

optima and local areas of correlation makes adaptation possible in complex systems.

18	 Kauffman 46

Figure 2.3.2  An uncorrelated fitness 
landscape has many peaks.  The fitness of 
one point bears no relation to the finess 
of any of its neighbors.  Image from 
Beinhocker.



18

	 So far, the landscapes that have been discussed are static.  However, the shape 

of a landscape itself may change over time, and epistatic relationships can arise 

and disappear.  In the one-room building example, the fitness landscape discovered 

by the architect is a property of the simulated climate.  If another climate is used, 

say one with colder temperatures or a higher sun angle, the shape of the landscape 

changes, and a different set of alleles will produce the fittest design.  Changes to the 

landscape do not always come from external sources.  For instance, the can opener 

is a fit product because, elsewhere in the economic fitness landscape, the aluminum 

can is also fit.  As advancing technology changes the can’s genes – the thickness and 

depth of the rim or the composition of its metal, for example – the fitness landscape 

under the can opener shifts to make a new design more practical.  If the aluminum can 

is someday surpassed by a new technology, the can opener will become useless, no 

longer a local optimum at all.  This phenomenon, co-evolution, also occurs in biology, 

where “predator and prey [are] constantly trying to keep one step ahead of the other.”  

Leigh Van Valen terms this the Red Queen effect, after the character’s line from Lewis 

Figure 2.3.3  A rough-correlated fitness 
landscape has several local optima 
separated by a mixture of smooth and 
discontinuous terrain.  Image from 
Beinhocker.
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Carroll’s Through the Looking-Glass, “it takes all the running you can do, to keep in 

the same place.”19

	 The shape of its fitness landscape says a lot about a complex adaptive system.  

It shows what species, technologies, or even building typologies the environment 

favors.  Unfortunately, fitness landscapes are very difficult to see.  The architect’s 

derived landscape for the one-room house is convenient because it has only two 

genes and a mere 936 genotypes.  However, the size of the search space grows 

exponentially as more genes are added into consideration.  Shear size and number of 

dimensions make it impossible to visualize most search spaces, let alone calculate the 

fitness of every possible combination of alleles.  The next chapter will discuss search 

mechanisms that overcome these difficulties and are able to find high peaks without 

viewing the entire landscape.

19	 Lewin 58
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Chapter 3

GENETIC ALGORITHMS

The problem of evolution as I see it is that of a mechanism by which 

the species may continually find its way from lower to higher peaks in 

such a field.  In order that this may occur, there must be some trial and 

error mechanism on a grand scale by which the species may explore the 

region surrounding the small portion of the field which it occupies.

Sewall Wright, 1932

3.1  The Air-Conditioned Box, Again

	 Once more, the architect must minimize the heating, ventilation, and air-

conditioning (HVAC) load of her one-room buildings.  This time, she wishes to find an 

optimal genotype without taking the time to test every possible alternative.  She knows 

that without searching the entire space, she is not guaranteed to find the best solution.  

However, she would like to have a high probability of finding the best solution, or at 

least a very good local optimum.

	 To start with, she picks random values for roof slope and rotation on the 

site.  She runs the simulation on the initial genotype, and also on each of the four 

neighboring genotypes, those that differ from it by a minimal change of one allele.  

Next, she moves to the neighboring genotype that performed best and runs the 

simulation on its three untested neighbors.  She repeats this process of moving and 

testing until she reaches a genotype that outperforms all of its neighbors.  Because the 

landscape is rough-correlated, she is guaranteed to reach a local optimum eventually.  

However, since it is a complex landscape with multiple local optima, she does not 

know how the one she has found compares to other optima on the landscape.  To find 
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out, she picks a new genotype at random and repeats the entire process, hoping to find 

a different local optimum.  After several rounds of experimentation, she feels confident 

that she has found most of the local optima in the search space.  Still, she has tested 

only a small fraction of the possible phenotypes.

3.2  Techniques for Exploring Search Space

	 In the previous example, the architect created a simple search mechanism 

called a hill-climber.  The hill-climber is much faster than the brute-force search the 

architect tried in the last chapter.  However, it has the obvious shortcoming that it 

only finds the nearest local optimum to its starting point.  Other algorithms have been 

developed to solve this problem.

Figure 3.1.1  A fitness landscape can be explored quickly by an adaptive walk that 
starts at a random point and moves step by step to fitter neighbors.



22

PARENTS

OFFSPRING

SELECTION BETWEEN PARENT AND OFFSPRING

Figure 3.2.1  A parallel hill-climber starts with several random individuals and 
optimizes each along a separate path.  Each parent gives birth to one slightly different 
offspring, and the best of the two becomes the next parent in its lineage.
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	 One possible improvement is to start with a population of hill-climbers 

rather than a single one.  An algorithm that searches this way is called a parallel hill-

climber (PHC).  When multiple hill-climbers are present, the ones that reach the same 

optimum are said to be in that optimum’s basin of attraction.  It is usually expected 

(though it cannot be proven) that the landscape’s highest peak will have the largest 

basin.  Given a large enough population of hill-climbers, at least one is likely to start 

within the global optimum’s basin of attraction.

	 Sometimes, regions of the fitness landscape are quite flat, which can lead hill-

climbers to wander aimlessly, or drift.  One solution to this is an algorithm called 

simulated annealing.  Simulated annealing starts with a high mutation rate, which lets 

the searching agents effectively hop through flat regions in search of steeper terrain.  

Over time, the mutation rate is gradually lowered, so that individuals explore the 

landscape in more detail when they are likely to be near a peak.20  Simulated annealing 

also gives individuals a small probability of taking a step in the wrong direction.  This 

allows the algorithm to avoid getting stuck on low peaks that may exist near a better 

optimum.

	 Another method for avoiding low peaks supposes that each local optimum has 

some but not all of the most beneficial alleles.  The genetic algorithm (GA) allows 

recombination, where two previously tested genotypes are combined to create a new 

genotype.21  If each of the parent genotypes contains a block of beneficial material, 

then there is some hope that the offspring genotype will inherit both beneficial pieces.  

In this way, two parents that have reached low fitness peaks can produce an offspring 

that starts out at a higher point.  Later chapters in this thesis will explore the use of 

GAs in architecture in more detail.

20	 Kauffman 112
21	 Holland 70
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MU PARENTS

LAMBDA OFFSPRING

SELECTION FROM ENTIRE POPULATION

Figure 3.2.2  In a genetic algorithm, parents mate to produce offspring that inherit 
genes from both parents.  One parent may have multiple offspring that are chosen to 
become new parents.
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	 John Holland, who first described the GA, used it to mimic biological 

evolution.  One shortcoming of search space in this field is that it forces a one-to-

one correspondence between gene and trait.  If organisms actually evolved this way, 

biological features such as symmetry and repetition of parts would be astoundingly 

improbable.  For instance, the homologous structures of the arms and legs would have 

had to evolve independently of each other.  Holland’s student John Koza replaces 

the search space from the GA with a rule space in genetic programming (GP).  The 

genotype that evolves in GP is a set of rules that act to alter a seed.  The seed may 

be an object, a virtual creature, a neural network, or even the code of a computer 

program.  GP is capable of developing much more complexity than a GA with a 

similarly sized search space.22

	 Simulations of social systems also typically use a rule space.  In these models, 

the rule space describes the behaviors of individuals, or agents, in the artificial society.  

Successful agents (those whose behaviors help them to find food, gain wealth, or 

otherwise meet some goal) produce offspring with some genetic variation, while 

failed agents eventually die.  Agents following simple local rules in a simulated 

world produce emergent global behaviors such as migration, cultural transmission, 

war, epidemics, and trade.23  Modeling of complex social situations can even provide 

strategies for conflict resolution.24  In these simulations, fitness is not an explicit 

property of a point in rule space.  Rather, it is an implicit property of an agent based 

on the ability (or failure) of the agent to survive.  Simulations that use this Darwinian 

definition of fitness are called artificial life (AL).

	 This is by no means a definitive list of methods for exploring search spaces, 

but it is useful to see the variety of optimization algorithms based on the concept.  

22	 Koza 73
23	 Epstein 15
24	 Axelrod 110
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Phenotypes do not have to have spatial forms, but all of the techniques discussed 

here lend themselves to spatial problems.  The algorithm that an architect chooses 

to explore the search space should reflect the complexity of the desired solution.  

Agent-based models can arrive at large-scale spatial arrangements that satisfy many 

competing interests, while a hill-climber may be all the architect needs for the simple 

example of the one-room building.  Most architectural problems will fall somewhere 

between these extremes.

3.3  The Evolutionary Mechanism

	 While the optimization methods discussed so far differ in their details, all rely 

on the same basic mechanism for exploring search space.  This mechanism, evolution, 

is common to all complex adaptive systems.  Evolution works by iterative repetition of 

four processes:  translation, evaluation, selection, and variation.

VARIATION

GENETIC
ALGORITHM

SELECTION

TRANSLATION

EVALUATION

Figure 3.3.1  Evolution occurs by a cycle of translation, evaluation, selection, and 
variation.
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	 The first step of the cycle is the translation of a genotype to create a 

phenotype.  The biological transcription mechanism should be familiar to anyone who 

has completed high school biology.  An organism’s genotype is carried by its DNA.  

The A’s, C’s, G’s, and T’s that make up a molecule of DNA are the genetic code’s 

schema, or method of storing information.  This information is transcribed to RNA and 

read by ribosomes, the body’s schema readers, which create the proteins and enzymes 

that make up the organism’s phenotype.  In man-made complex adaptive systems like 

economy, genotypes may not be written out so explicitly.

Again, our standard is not that the schemata contain so much 

information that just anyone can [read them], but rather that a qualified 

reader could read the plans and make the object or provide the service.  

Thus, we would expect that a team of qualified house builders could 

use the [schemata] for house building to render the design for a house, 

or that a team of Eli Lilly scientists and technicians could use a set of 

pharmaceutical [schemata] to make the drug raloxifene.25

These schemata define the building block components and assembly methods that 

create a technological artifact, just as DNA codes for the protein building blocks 

and enzyme assembly tools that create an organism.  The genetic code of a man-

made object can be thought of as a description of its parts and assembly sufficient 

to differentiate it from other objects.  “Think of an automobile {V6 / 1.8 liter / 200 

horsepower / four-door / leather seats / etc.} or a personal computer {2 GHz Pentium 4 

/ 128 MB memory / 80 GB hard drive / 4X CD burner / etc.}.”26

25	 Beinhocker 245
26	 Beinhocker 247
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	 Once a collection of phenotypes exists, each one undergoes evaluation.  The 

choice of evaluation criteria is not important to the evolutionary mechanism.  It is 

sufficient that fitness criteria exist.  In biology, fitness is the ability to produce viable 

offspring, and more offspring mean higher fitness.  In the economy, a good or service 

is fit if it meets some demand.  Evolution performed outside of the real world’s testing 

environment requires an explicit measure of fitness.  For instance, the architect in the 

one-room building example used a simulation of HVAC load to evaluate her designs.

	 Having established the fitness of the population’s members, evolution requires 

that desirable members be selected.  Selection exists because of scarcity.  Were the 

resources needed for life or for product manufacturing limitless, there would be no 

need to select only some individuals for propagation.  When evolution takes place 

outside of real-world selective pressures, it is necessary to impose scarcity by other 

means.  Artificial scarcity is introduced by limiting the number of individuals that may 

be selected.

	 Evaluation and selection are closely related in some complex adaptive systems.  

In biology, selection is synonymous with reproduction.  Goods and services that are 

selected in the economy are produced at higher rates and become objects of scrutiny 

for potential improvement (and knock-offs).  In these complex adaptive systems, 

there is no strict limit to the number of individuals that will be selected.  There is also 

no guaranty that any will be selected, so a species may go extinct.  Such systems are 

nondeterministic, meaning that selected individuals may not be the best in terms of 

explicit fitness criteria.  Think, for example, of the selection of VHS technology over 

Betamax.

	 Finally, the selected individuals produce offspring with variation.  While 

variation in biology is the result of random occurrences, variation in the world of 

human invention is frequently purposeful.  It is important to note “that there is nothing 
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fundamental in the nature of the evolutionary algorithm that says intentionality and 

rationality cannot play a role, nor does anything say the process must be completely 

random.”27  Evolution requires only that variation exist in the population.

	 The biological world has two means of producing variation.  Mutation occurs 

when an accident in copying the genome gives the offspring an allele that neither 

parent possesses.  Crossover occurs when genetic material is swapped between two 

chromosomes, creating new chromosomes that neither parent has but that do not 

necessarily contain new alleles.  As a result of crossover, genes that were previously 

inherited independently from each other become linked.  This is useful if by chance 

27	 Beinhocker 249
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Figure 3.3.2  In biology, variation is produced by mutation, in which an error is made 
in copying DNA, and crossover, where chromosomes exchange a DNA segment.
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the two genes have a synergistic epistatic relationship.  Together, mutation and 

crossover are responsible for all of the variety in the living world.

The action of natural selection has often been compared to that of an 

engineer.  This, however, does not seem to be a suitable comparison.  

First, because in contrast to what occurs in evolution, the engineer 

works according to a preconceived plan in that he foresees the product 

of his efforts.  Second, because of the way the engineer works:  to 

make a new product, he has at his disposal both material specially 

prepared to that end and machines designed solely for that task. . . .  

[Natural selection] works more like a tinkerer – a tinkerer who does not 

know exactly what he is going to produce but uses whatever he finds 

around him whether it be pieces of string, fragments of wood, or old 

cardboards; in short it works like a tinkerer who uses everything at his 

disposal to produce some kind of workable object.28

	 People generate variety in the economic fitness landscape with a mix of the 

engineer’s rationality and the tinkerer’s opportunism.  In this deductive-tinkering 

approach, the area of search space around the current design genotype is well 

understood by science.  Within that area, the engineer can predict how phenotypes 

will behave before purposefully creating them.  Beyond it, lies a region grasped by 

“unconscious inductive cognitive processes, associative thinking, and reasoning by 

analogy.”29  This is where the tinkerer operates.  These two regions define the extent of 

not-quite-random variation available to economic evolution.

28	 Jacob 1163
29	 Beinhocker 250
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	 Having produced offspring with variation, the evolutionary cycle repeats itself, 

translating the offspring genotypes, evaluating their phenotypes, and selecting those 

that will parent the next generation.  It is not a metaphor to say that economic goods 

and services evolve.  The evolutionary mechanism, the genetic algorithm, powers 

adaptation in all complex adaptive systems.  The patterns it produces in biological 

evolution are found in other complex adaptive systems as well.  For instance, 550 

million years ago, the diversity of early multi-cellular life skyrocketed in a period 

known as the Cambrian explosion.  Over time, this diversity was lost as most of the 

hundred or so phyla born in that explosive period went extinct.30  The same pattern 

occurs in technological artifacts.

Think of the first bicycles or the first cars.  Lots of experimentation to 

begin with, different forms of bicycle, different forms of propulsion 

and design for cars, all viable.  As time goes on and the world gets full 

of cycles or cars, or whatever it is you’re thinking of, the extremes get 

weeded out, a few forms survive, and subsequent innovation focuses 

30	 Kauffman 76

Figure 3.3.3  Variation occurs in man-
made artifacts through a deductive-
tinkering approach.  A small part of the 
search space has predictable fitness, while 
the area around it is open to investigation 
by tinkering.  Image from Beinhocker.
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on improvement on the remaining themes.  You go from generation of 

many themes to variations upon a few, just like the Cambrian.31

The result is the characteristic shape of the fitness curve.  When the fitness of the 

best individual of each generation is plotted, the rate of improvement is initially very 

high.  The first genotypes tried out by evolution are diverse, random, and not very fit.  

Improvement comes easily and there are plenty of alleles to put together in various 

combinations.  As time goes on, selection weeds out many realms of possibilities, 

the population becomes more homogeneous, and improvement slows.  The number 

of mutations that result in upward movement on the fitness landscape dwindles with 

each step forward.32  Occasionally, a useful mutation gives rise to a burst of creative 

activity.  This is the punctuated equilibrium model of evolution.

31	 Kauffman, quoted in Lewin 70
32	 Kauffman 44

POOR
FITNESS

GOOD
FITNESS

TIME

Figure 3.3.4  A typical fitness curve shows fast progress initially.  Over time, it 
becomes harder to find new improvements, and the curve levels.
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3.4  Appropriate Algorithms

	 The word algorithm refers to a set of specific instructions, usually given 

to a computer.  Many algorithms could be written to carry out the process of the 

evolutionary mechanism.  Each GA brings together methods of translation, evaluation, 

selection, and variation like pieces of a puzzle.  Some methods work together better 

than others, just as some puzzle pieces are closer fits.  No one GA will be useful for 

every complex optimization problem.  The architect interested in optimization must be 

careful to assemble an appropriate algorithm for the job.

	 First the architect must choose an appropriate schema, or means of 

representing the phenotype as a genotype.  When variation is introduced by mutation 

only, the genetic information can be encoded in any order.  However, as soon, as 

Figure 3.4.1  An effective genetic algorithm needs to be assembled from pieces.  
Different methods are appropriate to different problems.
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crossover is introduced, order matters.  A good schema packs genes that share an 

epistatic relationship into “short, highly fit combinations.”33  This linkage means that 

once a beneficial group of alleles is formed, it is less likely to be broken up during 

crossover.  Epistatis sometimes occurs unexpectedly, so a schema may need the 

flexibility to link any pair of genes.  Often, the phenotype in architectural or other 

spatial problems is composed of smaller building blocks.  The schema’s structure 

should mirror the composition and hierarchy of the phenotype’s components.

	 When a computer scientist writes a GA, the genotype is usually a string of 

bits, or ones and zeros.  This representation is not particularly helpful to the architect.  

Depending on what the genes represent, it may serve the architect to use either 

integers or to allow continuous variation of parameters.  Since spatial relationships in 

the phenotype occur in three dimensions, storing genes in a three-dimensional array 

rather than a one-dimensional string may also produce better linkage.  Alternately, 

a GP technique may be more appropriate to the problem since it can evolve the 

instructions for assembling a building.  Genetic material in a GP is typically stored in 

a hierarchical tree.  This schema may allow architects to model buildings that involve 

modularity.

	 The chosen schema will lend itself to certain types of mutation and crossover.  

For instance, the computer scientist’s bit string can be mutated by changing a bit 

from a one to a zero or vice versa, by adding or deleting a bit, or by changing the 

order of bits.  In a schema using integers, an algorithm that mutates by replacing one 

allele with a random integer will behave differently from an algorithm that mutates 

by adding increments to alleles.  The former will explore a broader expanse of search 

space, while the latter may discover local optima more quickly.  Likewise, different 

methods of crossover work with different schemata.  Two bit strings can be crossed 

33	 Goldberg 416
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with each other by splicing them at one point and swapping their ends, or by splicing 

them at two points and swapping their middle sections.  The latter approach allows the 

algorithm to take advantage of epistasis that may exist between the first and last genes 

of the sequence.  Genetic information stored in a multi-dimensional array does not 

lend itself to point crossover.  A more convenient approach involves dividing the array 

into halves for crossover.  The choice of what planes to allow cutting on affects the 

tightness of linkage and the space open to exploration.

	 Trees in GP schemata require yet another crossover method.  Typically, 

crossover in trees involves replacing a branch of one tree with a branch from another.  

If the two spliced branches do not come from the same hierarchical level of the 

tree, the schema is not of a fixed length, and the number of parts in the genotype 

(and phenotype) may grow or shrink.  This is useful if the desired solution’s size 

is unknown, but it can also lead to bloating when the solutions become larger than 

necessary.

	 In addition to selecting a schema, the architect must choose an appropriate 

selection mechanism.  Holding population size constant is a simple way to create 

selective pressure.  In a population of mu (µ) parents and lambda (λ) offspring (where 

µ and λ are numbers), only µ spots are available in the next generation.  In steady state 

or µ+λ selection, the best µ are chosen from the entire population.  In generational 

or µ–λ selection, only offspring compete for the µ spots in the next generation.  An 

algorithm that is too selective may eliminate diversity from the population in the 

process of eliminating its less fit members.  Once a population becomes homogeneous, 

crossover is no longer beneficial, and no improvement can occur until a new beneficial 

allele is discovered by mutation.  Larger population sizes and higher mutation rates 

improve diversity, but at a cost.  The more diverse a population is, the lower its 

average fitness is expected to be.
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	 Some other selection methods increase diversity at the expense of slowing 

improvement.  Niching methods split the population into smaller mating groups that 

evolve separately and are later brought back together.  Crowding methods cause 

fit offspring to replace similar individuals rather than the least fit members of the 

population.  In deterministic crowding (DC), each parent pair has two offspring, and 

each parent competes against its own most similar child to enter the next generation.  

Fitness proportional selection preserves population diversity by randomly picking 

individuals to advance to the next generation, where the probability of choosing a 

certain individual is related to that individual’s fitness.  The choice of selection method 

determines the speed at which evolution progresses and also the likelihood getting 

stuck at a local optimum.

	 Occasionally, two members of a population become so different from each 

other that any crossover between them will break some epistatic pairing of alleles.  

The inability of fit parents to create fit offspring is called speciation.  Speciation slows 

evolutionary progress because it decreases the number of fit offspring in a population.  

In a fixed-size population, the smaller of two equally fit species is usually driven to 

extinction.  Speciation occurs only in diverse populations, but it is not a reason to 

prevent diversity.

	 Poorly chosen evaluation criteria may reduce a population’s diversity.  GAs 

will exploit any discovery that gives advantage to an individual, including any 

assumptions made by the programmer.  This can happen when fitness is determined 

by an artificial valuation of competing goals or by a made-up formula.  An evaluation 

method that contains bugs or does not accurately reflect real-world selective pressures 

will give high fitness values to useless solutions.

	 Often, more than one criterion may be used to evaluate a phenotype.  The 

architect in the example could also have considered interior daylighting, roof drainage, 
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MATING PAIRS

OFFSPRING

SELECTION WITHIN PARENT/OFFSPRING PAIRS

Figure 3.4.2  Deterministic crowding breaks the parent population into pairs for 
mating.  Each pair produces two offspring.  Each parent is matched with its most 
similar child, and the more fit of the two advances to parent the next generation.
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views, or aesthetics instead of HVAC load.  A number of techniques exist for multi-

objective optimization.  One idea is to assign a weight to each criterion.  Unfortunately, 

little information is available to help assign weights before the first evaluation, and the 

wrong set of weights can bias evolution away from desirable outcomes.  Alternately, 

each fitness criterion may be graphed on a separate axis, so that the most fit individuals 

are farthest from (or closed to) the origin.  The best individuals, all with different 

strategies for achieving fitness, occupy a Pareto front on the graph.

	 Sometimes a GA is used to solve a broad problem where the fitness criteria 

describing a general solution are unknown.  Varying the particulars of the fitness 

criteria over time can maintain diversity and prevent the population from converging 

on a solution that fits only one instance of the problem.  In co-evolution, a population 

of fitness criteria evolves together with the population of solutions.  Fitness criteria 

are selected for their difficulty, so that the solutions do not reach a local optimum too 

quickly.

FITNESS
CRITERION

2

FITNESS CRITERION 1

Figure 3.4.3  A Pareto front connects the best individuals in a population optimized 
for multiple fitness criteria.
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	 The first trial of a new GA will often reveal problems with linkage and 

diversity.  The fact that the algorithm compiles and runs on a computer is not enough 

to guarantee that the solutions it finds are useful.  Often, several puzzle pieces must 

be tested out in the GA to make the algorithm more successful.  Only analysis of the 

results can reveal if the GA is finding reasonably high peaks in the fitness landscape.

3.5  Uses in Architecture

	 It is no exaggeration to say that the evolutionary mechanism is already at work 

in architecture.  Observe the practice of a typical architect’s office; three variations 

of a design are shown to a client one day, and in the next week three variations of the 

client’s favorite are produced, and so on in an iterative manner.  When the algorithm 

is applied to computer simulation, every variation may not be as well thought-out as 

in the old-fashioned architect’s office, but the computer has the potential to create 

thousands more variations and evaluate them against many more criteria in less time.

	 Most applications of computerized optimization algorithms in architecture 

focus on structure.  This is in part because the fitness of a structure is easily evaluated 

in terms of strength or strength-to-weight ratio.  A GA optimizes the forms of Pablo 

Miranda Carranza’s “self-designed structures.”  In these bridges and cantilevers, the 

members co-evolve as they compete for material and load.34  Tom Wiscombe’s group 

EMERGENT emulates biological processes to create structures.  Wiscombe evaluates 

his structures for “both performance and spatial and atmospheric effects,” making his 

fitness determinations partly subjective.35

	 Thermal and environmental characteristics of buildings receive much less 

attention in algorithms.  These characteristics include incident solar radiation, interior 

daylighting, internal heating and cooling loads, and heat gains and losses through the 
34	 Carranza
35	 Wiscombe
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building envelope.  Analysis of thermal properties requires a lot of information, so it is 

generally carried out late in the design process, after most of the design decisions that 

affect it are finalized.  Demand for sustainable architecture has increased interest in 

thermal analysis in recent years.  At the SmartGeometry 2008 conference in Munich, 

Kaustuv De Biswas introduced a simple GA that optimized a tower for insolation 

using software he developed.36  The remainder of this thesis will focus on optimization 

made possible by this software.

 

36	 SmartGeometry

Figure 3.5.1  Self-Designed Structure by Pablo Miranda Carranza (left) and Cheongna 
City Tower by EMERGENT (right) are structures created with genetic algorithms.

Figure 3.5.2  A population of simple building envelopes evolves to maximize 
insolaiton in De Biswas’s SmartGeometry 2008 presentation.
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Chapter 4

TEST CASE

Of course, specialization is necessary today.  But so is the integration of 

specialized understanding to make a coherent whole, as we discussed 

earlier.  It is essential, therefore, that society assign a higher value 

than heretofore to integrative studies, necessarily crude, that try to 

encompass at once all the important features of a comprehensive 

situation, along with their interactions, by a kind of rough modeling or 

simulation.

Murray Gell-Mann, 1994

4.1  Software Environment

	 Architecture is a complex adaptive system where optimization is possible, so 

an evolutionary design approach should offer useful ideas to the architect.  Currently, 

no commercial software lets architects evaluate the energy-efficiency of buildings at 

the conceptual stage of design.  This prevents architects from exploring the search 

space of architectural form using sustainability as a fitness criterion.  To gain new 

insight into sustainable form, architects need a genetic method of form generation and 

a suitable tool for analyzing the thermal and environmental implications of a form.

	 Ecotect is a building analysis software tool intended to be used starting in 

the schematic phase of design.  The software models a building as a collection of 

polygonal surfaces with associated materials that create a set of closed volumes, 

or zones.  Ecotect includes functions for analyzing a zone’s thermal and acoustic 

properties, as well as estimating the building’s solar exposure and cost.  Since many 

decisions have yet to be made in schematic design, Ecotect uses heuristics to fill in 
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missing information about a building.  For instance, a default material is assigned to 

every surface until the user specifies actual materials, and surfaces are automatically 

treated as walls, floors, or ceilings depending on their orientation.37

	 One major disadvantage of Ecotect is its simple modeling interface that 

can only generate rectangular prisms.  In response to this, De Biswas developed a 

dynamic-link library (DLL) that allows the versatile associative parametric modeling 

program GenerativeComponents (GC) to communicate directly with Ecotect through 

Microsoft’s COM interface.38  The link regenerates geometry from GC in Ecotect 

and returns analysis results to GC.39  This process can be automated using GCScript, 

GC’s C#-based scripting language.  Through the DLL, the entire library of Ecotect 

commands is available within GCScript.  De Biswas has shown that a genetic 

algorithm (GA) can be written in GCScript using Ecotect for fitness evaluation.

	 This investigation builds on the work by De Biswas.  It uses the software link 

he developed, but introduces more realistic fitness criteria and a much larger search 

space.  The test subject is a parametric model of a house created in GC.  Ecotect 

evaluates each house in a population of design variants to determine the amount 

of energy required for lighting and heating or cooling during its worst-case month.  

Individuals requiring the least energy are selected to parent the next generation using 

deterministic crowding (DC).

4.2  Genotype and Phenotype

	 The phenotype in the optimization procedure is a house built on a nine-square 

grid.  This design problem has a rich history at Cornell University and inspired 

architects such as Colin Rowe, Peter Eisenman, and John Hejduk.  Each square of 

37	 Ecotect
38	 GenerativeComponents
39	 De Biswas
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the three-by-three grid contains a zone, or room, whose nine parameters determine its 

height, roof slope, material assignments, and affinity for openings to its neighbors.

	 The genotype that encodes the house’s parameters is a 3 × 3 × 9 array of 

doubles.  Each parameter is allowed to vary between 0 and 5/6 by increments of 1/6.  

Thus, six alleles are possible for each of the 81 genes that control the entire building.  

The first two dimensions of the array correspond to the sides of the nine-square grid, 

so that nine parameters are assigned to each zone.

	 The first three parameters for each zone define its height and the slope of its 

roof.  In early tests of the genetic algorithm, solutions tended to optimize for thermal 

performance by minimizing their volumes.  Since the desired volume of a building is 
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Figure 4.2.1  In translation from genotype to phenotype, an array column codes for a 
single house zone, while rows of the array map onto the rows of zones in the house.
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GijCij

Figure 4.2.2  Each array column contains nine parameters that control its 
corresponding zone.  These include three height parameters, five material parameters, 
and one parameter to control affinity for openings to other zones.
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generally known very early in design, it was decided to keep the total volume of each 

15 m × 15 m house constant at 900 m3.  Hence, the height parameter actually controls 

the relative, not absolute, height of the zone.  Under this schema, it is possible for 

a zone to have zero height, in which case Ecotect ignores it.  In zones that do have 

volume, variation of the two roof slope parameters is limited such that no corner of a 

zone can be less than 2.5 m in height.

	 Materials for the roof and four walls are assigned by the next five parameters.  

Three window and three opaque materials are available which offer R-values between 

0.17 and 3.3 m2·K/W (1 and 20 ft2·°F·h/Btu) and a range of transparencies and thermal 

lags similar to the range found in real building materials.

Material Window Opaque
0 1 2 3 4 5

U-Value (W/m2·K) 6.0 3.3 1.8 1.0 0.55 0.30
Admittance (W/m2·K) 6.0 3.3 1.8 1.0 0.55 0.30
Solar Heat Gain Coefficient 0.92 0.75 0.58
Solar Absorption Coefficient 0.5 0.67 0.83
Transparency 0.92 0.75 0.58 0 0 0
Thermal Lag (hours) 0 0 0 3 4 5
Emissivity 0 0.17 0.33 0.90 0.90 0.90

900 m3

Figure 4.2.3  The total volume of the zones is kept constant in order to prevent the 
algorithm from minimizing the building’s volume.

Figure 4.2.4  The six materials available to the algorithm reflect the properties of a 
range of building materials.  Three represent windows, and three are opaque.
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	 The final parameter gives each zone an affinity for openings to its neighbors.  

Ecotect simulates openings between zones using a material called a void whose 

thermal properties are similar to air.  If the sum of two neighboring zones’ last 

parameters is greater than one, a void surface is placed between them.  A zone with a 

high affinity for openings tends to share void surfaces with most of its neighbors, but 

no zone can be forced to border a void.  This method for placing voids allows genes 

that are intrinsic properties of zones to control traits in the phenotype that are not part 

of a single zone.

	 In all, there are 681, or about 1.07×1063 different genotypes under this schema, 

which code for a slightly smaller number of phenotypes.  Since the thermal analysis of 

each individual takes about 90 seconds, it would take about 3.06×1057 years to analyze 

every possible variant on a typical dual-core PC.  By comparison, the universe is only 

about 13.7 billion years old.  At this rate, a brute force approach to finding the optimal 

solution for a given climate requires 2.23×1047 times the age of the universe to carry 

out.  This is a rather long time to spend on the design of a single building.

4.3  Evaluation

	 Typically, thermal analysis is concerned with only one property of a building 

at a time.  For instance, De Biswas’s GA optimizes only for insolation, the amount 

of sunlight falling on surfaces.  However, many factors contribute to the thermal 

comfort and energy draw of a building, so optimization of a single property is rarely 

sufficient in design.  Early trials in this investigation sought only to minimize the 

house’s heating, ventilation, and air-conditioning (HVAC) load.  The typical result was 

a building with no windows or only one window, as these structures tend to be better 

insulated.  Designs that provide interior daylight are encouraged using a form of multi-

objective optimization that monitors both HVAC and electric lighting loads.
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Figure 4.3.1  The process of creating and evaluating each individual is split between 
GenerativeComponents (GC) and Ecotect.  GC provides Ecotect with a phenotype’s 
geometry and material properties.  Ecotect refers to its own library of climate data in 
order to perform its analysis, and returns the results to GC to use in selecting parents 
for the next generation.

	 Ecotect uses data from a .wea weather file to model a climate.  This data 

includes direct and diffuse solar radiation and temperature, as well as humidity and 

wind information.  Ecotect is also able to calculate the daylight factor, or percentage 

of outside daylight available indoors, as an intrinsic property of a point in space.  

Thus, a schedule can be created for each zone on each day of the year to determine 

when natural light levels inside drop below a threshold and must be supplemented with 

electric lights.  By varying the threshold and the lamp efficacy, or light output per unit 

of expended energy, the amount of energy required for lighting is adjusted to balance 

the need for windows with the need for thermal insulation.  In this investigation, each 

zone requires an illumination of 538 lumens (50 footcandles) between 6 am and 10 

pm, provided when necessary by conventional incandescent lamps with an efficacy of 

13 lumens per watt.  When electric lights are on, they also give off heat.



47

	 Ecotect performs thermal analysis using the Chartered Institution of Building 

Services Engineers (CIBSE) admittance method, which assumes the temperature 

in each zone to be constant at any given hour.  Energy can enter or leave a zone by 

several methods, causing the temperature to change.

•	 Conduction:  Energy can pass from one zone to another or to the outside 

through walls and ceilings.  Material properties such as R-value and thermal 

lag affect how quickly energy flows through a surface.  The difference in 

temperature between the two sides of the surface determines the amount of 

energy that crosses it.
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COOLING

CONDUCTION
THROUGH WALLS

SOL-AIR
CONVECTIVE HEATING

DIRECT SOLAR
RADIATION THROUGH WINDOWS

INTERNAL
OCCUPANTS & APPLIANCES
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ELECTRICITY USE
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ELECTRICITY USE

Figure 4.3.2  The admittance method used by Ecotect balances the amount of energy 
flowing into and out of each zone.  Highlighted energy sources detract from fitness.
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•	 Sol-Air Gains:  Convective heating of the air next to a surface by sunlight 

increases the amount of heat transmitted through it.  Darker surfaces 

experience greater sol-air gains because they convert more light to heat.

•	 Direct Solar Gains:  Radiant energy entering a zone through a transparent 

surface such as a window heats the zone from the inside.  Solar heat gain is 

dependent on the window area and amount of available solar radiation.

•	 Ventilation:  No building is airtight, so air carrying a certain amount of sensible 

and latent energy will enter or leave through cracks and windows.  The amount 

of air moving through a zone depends on the zone’s surface area and window 

area.

•	 Internal Gains:  Each zone contains occupants, appliances, and electric lights, 

all of which give off heat.

COOLING

HEATING

LIGHTING

Figure 4.3.3  Ecotect performs calculations one hour at a time returning the energy 
required for heating (blue), cooling (orange), and lighting (yellow), which are 
functions of other energy flows into and out of the house.
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Each house has a full air-conditioning system and a restrictive comfort band between 

22.22 and 24.44 °C (72 and 76 °F).  The HVAC system uses energy to control the 

temperature when one or more zones would otherwise be outside the comfort band.

	 It is standard practice to design the HVAC systems of buildings with the worst-

case month in mind.  Buildings in cold climates are designed for winter temperatures, 

and those in hot climates are designed for summer conditions.  In this investigation, 

analysis is performed for each day of the controlling month and averaged to find the 

daily energy requirement during the worst-case month.  The results are compared to 

other trials in which analysis is performed for the entire year.

	 Three climates are tested in this investigation.  Anchorage, Alaska (61.1 °N), is 

chosen as a cold climate.  In January, the controlling month, it receives only 5 hours of 

sunlight each day.  Dubai, in the United Arab Emirates (25.2 °N), serves as a test case 

for hot climates.  The controlling month for cooling is August, when the sun is almost 

directly overhead.  These results are compared to Ithaca, New York (42.3 °N), which is 

in a temperate climate, but still one where January controls thermal design.

Figure 4.3.4  Three test locations represent a range of climates.  Anchorage serves as 
a cold climate with a low sun angle.  Ithaca has a temperate climate.  Dubai is hot and 
occasionally receives sunlight from directly overhead.

ANCHORAGE
61.1 °N

ITHACA
43.2 °N

DUBAI
25.2 °N
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4.4  Selection

	 For the architect using optimization algorithms to find energy-efficient forms, 

it is important that solutions be not only good, but also diverse.  This investigation 

uses DC to maintain diversity in the population of solutions.  A mu+lambda (µ+λ) 

algorithm and a parallel hill-climber (PHC) algorithm are also considered as 

alternatives to DC.

	 In each generation, daylight and thermal analysis is carried out on ten 

individuals.  This means that the population size in the DC and PHC algorithms is ten, 

and in the µ+λ algorithm, the number of parents (µ) and number of offspring (λ) are 

both set to ten.  In µ+λ, there is open competition between all parents and offspring 

for the µ spots in the next parent generation.  In DC, the parent population is randomly 

divided into mating pairs, and each pair produces two offspring.  An offspring replaces 

its closest parent if it outperforms that parent.  Closest parents are determined in such 

a way that the sum of Hamming distances, the number of one-mutant steps, between 

parents and their respective offspring is minimized.  The PHC algorithm is essentially 

the same as DC except that no crossover occurs, so that the ten individuals in each 

generation belong to separate lineages.

	 Each trial runs for fifty generations for a total of 500 calculations.  This 

number of calculations takes about twelve to fourteen hours to perform.  The number 

was chosen so that trials could be run in a public computer lab at times when few 

computers were in use, usually on Friday and Saturday nights.

4.5  Variation

	 The genotypes of the first generation are created at random.  Hence, a large 

amount of variation is expected initially.  Each offspring in later generations is created 

by applying one of five variation operators to members of its parent generation.  



51

The first two operators are versions of 

mutation and crossover adapted for this 

schema, while the rest are unique to this 

schema.

•	 Mutation:  A single gene of one 

parent’s 3 × 3 × 9 array genotype 

is overwritten with a random 

allele to create an offspring.

•	 Crossover:  The genotypes of 

two parents are combined to 

create an offspring.  In this case, 

a random plane described by the 

equation ax + by + cz + d = 0 cuts 

through the array, and genes to 

one side of the plane are taken 

from one parent while genes on 

the other side are taken from 

the other parent.  It is simple to 

imagine this as phenotypic zones 

to one side of the plane coming 

from one parent and zones on 

the other side coming from the 

other parent.  However, it is also 

possible for the plane to cut the 

array so that all zone heights 

CROSSOVER

SWITCH

MUTATION

ROTATE

COPY

Figure 4.5.1  Point mutation and crossover 
are typical variation operators in genetic 
algorithms.  The switch, copy, and rotate 
operators are specialized mutations unique 
to the house phenotype.
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come from one parent and all material assignments come from the other.  Many 

other divisions are possible, too.

•	 Switch:  The parameters for two zones are switched.  In the resulting 

offspring’s phenotype, two zones appear in different locations than in the 

parent, while all other zones remain the same in both.

•	 Copy:  The parameters for one zone replace those of another zone.  Two 

identical zones appear in the resulting offspring’s phenotype, while the same 

zone appears only once in the parent.

•	 Rotate:  The parameters for one zone’s roof slope and wall material 

assignments are reordered in such a way that the phenotypic zone in the 

offspring appears to have rotated 90° from its orientation in the parent.  When 

this variation operator is called, it executes one, two, or three times, so that 

rotations of 90°, 180°, or 270° are equally likely.

Only one variation operator is used to create each offspring.  Probabilities for the 

occurrence of each type of variation are as follows.

Variation Operator Deterministic Crowding
and Mu+Lambda

Parallel Hill-Climber

Mutation 10% 20%
Crossover 50% 0%
Switch 10% 20%
Copy 10% 20%
Rotate 20% 40%

	 The algorithms described in this chapter include translation, evaluation, 

selection, and variation procedures.  Therefore, they should display evolutionary 

improvement when run.  The next chapter describes the results of a series of trials of 

these algorithms.
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Figure 4.5.2  An algorithm containing well-chosen components should display 
evolutionary tendencies.
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Chapter 5

RESULTS

To seek not for ends but for antecedents is the way of the physicist, 

who finds “causes” in what he has learned to recognize as fundamental 

properties, or inseparable concomitants, or unchanging laws, of matter 

and of energy.

	 Nevertheless, when philosophy bids us hearken and obey 

the lessons both of mechanical and of teleological interpretation, the 

precept is hard to follow: so that oftentimes it has come to pass, just 

as in [Roger] Bacon’s day, that a leaning to the side of the final cause 

“hath intercepted the severe and diligent enquiry of all real and physical 

causes,” and has brought it about that “the search of the physical cause 

hath been neglected and passed in silence.”

	 So long and so far as “fortuitous variation” and “survival of the 

fittest” remain engrained as fundamental and satisfactory hypotheses in 

the philosophy of biology, so long will these “satisfactory and specious 

causes” tend to stay “severe and diligent enquiry . . . to the great arrest 

and prejudice of future discovery.”

D’Arcy Thompson, 1917

5.1  Climate

	 In every run of the deterministic crowding (DC) algorithm, every one of the 

ten solutions found performs better than the initial randomly created population, and 

in some cases much better.  This is true in each of the selected climates, although 

some are better suited to optimization than others.  Since the majority of architectural 
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designs are arrived at without conducting any thermal analysis, it is reasonable to 

assume that an “average” building performs about as well as one of the randomly 

generated members of the starting population.

	 The effectiveness of the genetic algorithm varies depending on the climate.  In 

Anchorage, where the January temperature is far outside of the comfort band, the most 

significant improvement is seen.  In four trials, the average improvement in the best 

solution by the fiftieth generation is 60%.  This is a remarkable improvement in energy 

savings; as a comparison, the U.S. Green Building Council offers a scale of award 

credits to new buildings achieving between 10.5% and 42% energy savings over 

typical construction.40  The decrease in energy use in Dubai’s hot climate averages 

40%.  In Ithaca, improvements by the fiftieth generation average 55%.

	 Several factors may explain the differences in level of improvement between 

these climates.  The winter temperature in Anchorage is farther out of the comfort 

band than are the temperatures in the other climates, so initially chosen phenotypes 

are likely to perform far worse there, and the fitness landscape may have steeper 

40	 LEED
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Figure 5.1.1  The improvement in the best individual of each trial over fifty 
generations falls within a certain range for each climate.
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gradients.  Some early experiments used climate data from Nairobi, which sits almost 

directly on the equator.  Very little improvement was found in these trials, and further 

investigation uncovered that the temperature in Nairobi hovers around the comfort 

band year round.  As a result, Nairobi’s fitness landscape is quite flat, so little useful 

adaptation occurs and genetic drift is quite likely.

	 Another reason for the differences seen in the selected climates is the effect 

of considering summer rather than winter behavior.  In Anchorage and Ithaca, where 

the need for heating governs design, the internal gains arising from electric lighting 

and occupants reduce the need for heating from mechanical systems.  In Dubai, 

where cooling is critical to design, the same internal gains increase the need for 

energy to cool the building.  The requirement for interior light levels imposed in this 

investigation means that each zone receives heating either by sunlight or electric 

lighting.  In cold climates, this can sometimes reduce the total energy consumption, 

but in hot climates this always adds to it.

Figure 5.1.2  The mean of the best individual’s fitness from each trial takes the shape 
of typical fitness curves.  Trials in different climates improve at different speeds.
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5.2  Algorithm Performance

	 Thermal and daylighting analyses alone are insufficient to make all the 

decisions that affect a building’s form.  Because the architect cannot expect to account 

for every important factor in the fitness criteria, it is important that the GA provide a 

variety of solutions.  DC is used in this investigation because of its ability to maintain 

diversity in a population.  However, other types of genetic algorithms might provide 

better solutions.

	 Trials in Ithaca’s climate are repeated using a mu+lambda (µ+λ) algorithm 

and a parallel hill-climber (PHC).  In three trials, the average improvement of the 

best individual in a PHC population over fifty generations is 53%, not far below the 

average of 55% for DC.  The population at the end of each PHC run is also very 

diverse.  However, while the entire final population of the DC algorithm outperforms 

the best individual in the first generation, many of the solutions generated by PHC 

are poor performers.  Without the benefit of recombination, only the individuals that 

started out in good basins of attraction are likely to have successful offspring.
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Figure 5.2.1  The improvement in the best individual of each trial over fifty 
generations varies according to the algorithm used.  Some algorithms produce 
uniform levels of improvement because they climb peaks faster.  Algorithms that test 
more of the search space may not improve as much.
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Figure 5.2.2  The mu+lambda 
algorithm initially experiences 
dramatic improvement that 
levels off before the end of the 
trial.  The loss of diversity is 
evident as the range of fitness 
scores in each generation is 
quite narrow.

Figure 5.2.3  In a typical 
run of the deterministic 
crowding algorithm over fifty 
generations, the best individual 
improves by over 50% and 
all of the final generation 
outperforms the first.

Figure 5.2.4  In the parallel 
hill-climber algorithm, a few 
individuals produce offspring 
as successful as those in some 
deterministic crowding trials.  
However, some of the solutions 
found in the final generation do 
not outperform the initial best.
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	 In contrast, µ+λ performs quite a bit better.  In three trials, the best individual 

improves an average of 71% over fifty generations.  Unfortunately, a great loss of 

diversity accompanies this large improvement.  The solutions found in each µ+λ trial 

are quite similar in appearance and performance.  As a result, the architect must run far 

more trials in order to accumulate a diverse set of design options.

5.3  Analysis Period

	 Conventional wisdom in architecture holds that a building should be designed 

for the month in which outside temperatures are farthest away from the comfort band.  

In keeping with this convention, the trials described so far use only climate data from 

the controlling month for the evaluation of each individual.  Three additional trials use 

Ithaca climate data from the entire year to check the validity of this method.  To save 

computational time, the climate data from the year is sampled every fifth day instead 

of every day.
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Figure 5.2.5  The mean of the best individual’s fitness from each trial improves at a 
different rate depending on the algorithm used.



60

	 Buildings optimized for data from the entire year are expected to perform 

poorly in the controlling month.  Logically, the controlling month will have less 

of an effect on the building’s shape, and selective pressures will favor houses that 

perform better in other months.  For instance, a house in a cold climate might develop 

adaptations suited to cooling in the summer months that cause the house to lose 

heat in the winter.  Fitness values and improvement levels from these trials cannot 

be compared to previous results because optimizing for the entire year is a different 

fitness criterion.  Instead, the solutions must be directly compared in terms of each 

month’s thermal performance.

	 The result of this comparison is startling.  When the monthly heating and 

cooling loads of the best solutions are averaged within each set of trials, houses 

optimized for the full year outperform those optimized for the controlling month.  

Houses optimized only for the governing month perform worse in every month 

– even in the month that controls.  Including the second and third best solutions in the 

averages to increase the sample size does not change the trend.
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Figure 5.3.1  Mean monthly heating and cooling loads in Ithaca are consistently  
smaller in houses optimized for the entire year’s climate data.
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	 The evaluation mechanism may be to blame for this defiance of conventional 

wisdom.  Due to the heuristic nature of Ecotect’s calculations and the fact that 

different data is available to Ecotect after is has performed a full year’s worth 

of analysis, the information obtained in the two sets of trials may not be strictly 

comparable.  Also, Ecotect’s analysis of monthly heating and cooling loads does not 

take into account energy used to turn on lights, which also contributes to the fitness 

measurement.  Hence, incompatibility of the compared data cannot be ruled out.

	 On the other hand, there may be an advantage to designing the house for the 

full year’s climate data.  Co-evolution by varying the fitness criteria helps evolving 

populations avoid low fitness peaks.  The broader range of phenotypes that appear fit 

under the full year’s data may encourage diversity.  A diverse population can explore 

more of the fitness landscape and is more likely to discover allele combinations 

that perform well in all weather.  Adaptations that mainly benefit the house in non-

controlling months but offer some advantage in the controlling month can accumulate 

in the population and eventually lead to a very fit phenotype.

Figure 5.3.2  A larger sample size used to calculate the mean monthly heating and 
cooling loads in Ithaca confirms that houses optimized for the full year perform better.
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	 The diversity of solutions found by the GA gives architects a lot of fit starting 

points for developing the house design.  The next chapter examines the diversity of 

several trials and the effect it has on design options.  Some particularly creative design 

solutions from the GA are taken a step farther into schematic design.
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Chapter 6

DESIGN

The artist’s present plight is a sad one, but may he truthfully say that 

society is less well off because Architecture, or even Art, as it were, is 

dead, and printing, or the Machine, lives?

	 Is it not more likely that the medium of artistic expression itself 

has broadened and changed until a new definition and new direction 

must be given the art activity of the future, and that the Machine has 

finally made for the artist, whether he will yet own it or not, a splendid 

distinction between the Art of old and the Art to come?

Frank Lloyd Wright, 1901

6.1  Process

	 Each solution found by the genetic algorithm (GA) presents the architect with 

a lot of information.  Heights of zones suggest locations where a second story can be 

added.  Material assignments affect the amount of natural light entering a zone and the 

amount of heat it can store during the day to release at night.  This information, along 

with the locations of openings that allow a room to span multiple zones, makes certain 

zones better suited to different functions.  Changing a height, material assignment, or 

opening location alters the fitness of a design, so the algorithm’s recommendations to 

the architect are quite specific.  However, each time the algorithm is run, the architect 

receives ten new solutions.  After a few runs of the algorithm, the architect has many 

fit design options to choose from.

	 The diversity of fit solutions found in a single run of the algorithm may not 

be immediately apparent, since the eye notices overall shape more quickly than it 
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recognizes material differences.  However, since most of the typical rooms in a house 

have unique size and lighting needs, two building envelopes with the same overall 

shape may be better suited to quite different interiors.  To demonstrate the diversity 

within a single run of the deterministic crowding (DC) algorithm, solutions from one 

run in each climate are developed as floor plans.  Each floor plan represents a three-

bedroom house with foyer, living room, dining room, kitchen, and garage.  Each zone 

Figure 6.1.1  Floor plans at 1’ = 1/32” scale based on solutions from a trial in 
Anchorage show significant diversity despite sharing the same three footprints.  Dark 
shading indicates space for a second floor above what is shown.
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is assigned a particular room type based on its traits.  For instance, the living room 

has first priority for any zone with openings.  The master bedroom tends to be placed 

in a second story space when one is available.  The garage is typically placed in a 

zone with a high U-value, since it is unlikely to be well insulated, but the dining room 

also has preference for high U-value zones with southern exposure in order to receive 

Figure 6.1.2  Floor plans at 1’ = 1/32” scale based on solutions from a trial in Ithaca 
are varied but include patterns revealing their close genetic ties.  Dark shading 
indicates space for a second floor above what is shown.
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natural light.  Once each room type’s needs are met, other decisions about the layout 

of the house respect the adjacencies and circulation patterns of typical residences.

	 No architect should be content to proceed with a design simply because an 

algorithm finds it fit.  It is important to understand why a particular design performs 

well under certain evaluation criteria.  This information also lets the architect know 

what parts of a design can be modified and which are necessary to the design’s 

Figure 6.1.3  Floor plans at 1’ = 1/32” scale based on solutions from a trial in Dubai 
are diverse variations on a few themes.  Dark shading indicates space for a second 
floor above what is shown.
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Figure 6.1.4  Each type of room is better suited to zones with certain genetic traits.  
Upward arrows indicate that the room type prefers a higher value for that allele 
category, and larger arrows indicate a stronger preference.



68

function.  A few solutions discovered by the GA are notable for their display of 

machine creativity, adaptations that seem particularly well thought-out even though 

no human intelligence is behind them.  As proof of the creative potential of GAs, one 

solution from each climate is elaborated into a schematic design.  The chosen solutions 

are not necessarily the best from their climate or from their run, but they perform 

significantly better than the “average” house because of clever adaptations.

6.2  Anchorage

	 One solution in Anchorage’s climate includes a south-facing window that 

provides a view in to the center-south, center, and center-north zones, all of which are 

connected by openings.  This adaptation allows the sun, whose angle does not change 

much in the sky in January, to heat the floor of one third of the house for the few hours 

it is up.  This heat is released back into the house at night.  The height of the window 

is such that even in the sun’s highest position in January, sunlight reaches the base of 

the house’s north wall.

	 The walls of the Anchorage house are well suited to a cold climate.  Since the 

exterior walls on the west side have a high thermal lag value, they absorb heat from 

the setting sun and release that heat into the building at night.  The roof is also made of 

this highly insulative material.  The material of the east wall is slightly thinner; it still 

Figure 6.2.1  A unique 
adaptation for extreme 
northern climates uses 
sunlight to heat the entire 
depth of the house.  This 
heat can be absorbed by 
the building’s structure 
and released at night.
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provides reasonable insulation, but has a lower thermal lag that allows the rising sun 

to heat the interior more quickly.  By comparison, the south walls are relatively thin.  

These walls receive the most direct solar exposure and therefore let in the most heat.  

At the same time, the area of these walls is small to minimize heat loss at night.

	 The schematic design for the Anchorage house emphasizes the placement of 

materials in the GA’s design.  Each zone or group of open zones is treated as a tube 

wrapped by a thick envelope above and on the east and west sides.  The south end 

Figure 6.2.2  The plan of the Anchorage house is a series of tubes open to the south.  
These dimensions of the central tube let light and heat reach the back of the house.

Figure 6.2.3  The shape of the Anchorage house blends with Anchorage’s landscape.
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of each tube is relatively thin with some glazed area, while openings in the other 

sides are thin punched slivers.  The entrance at the northeast corner of the building is 

incorporated into one of the wrappings.  Because of the large number of zones with 

openings, the living room, foyer, dining area, and kitchen all connect.  A second story 

passage from the stairs to the master bedroom suite also opens into this space; its 

shape reflects the angle of the roof it parallels.  The overall massing of the building, a 

product of the GA with minimal alteration, is treated to resemble the mountains that 

make up Anchorage’s backdrop.

Figure 6.2.4  The Anchorage house in plan and section at 1’ = 1/32” scale.
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Figure 6.2.5  Over the course of one year, the Anchorage house gains heat from 
occupants (blue) and solar gains through windows (yellow).  It loses heat through air 
infiltration (green) and conduction through walls (red).

Figure 6.2.6  Additional heating (red) and cooling (blue) keep the Anchorage house 
comfortable.  The south-facing window provides heat even in cold months.
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6.3  Ithaca

	 The most successful individual from one trial in Ithaca’s climate has a roof 

slope that perfectly matches the sun’s angle at noon on January 30th.  This angle 

maximizes the amount of sunlight hitting the relatively thin southern walls.  Copy 

and rotate operators duplicated zones with this slope onto five of the nine grid squares 

in a way that minimizes the surface area exposed to the north, east, and west.  The 

arrangement allows the interior of the building to heat quickly in the day and retain 

heat at night.

	 The interior of the Ithaca house contains an unusually large number of zones 

connected by openings.  These six zones, mostly identical except for rotation, are 

all tall enough to contain a second story.  The remaining three zones are very short, 

flat, and have little insulation.  The strong diagonals of the first group set it apart 

visually from the low profile of the second.  These two groups of zones are further 

differentiated in the schematic elaboration of the design.  Inside the larger zones, 

diagonal lines regulate elements such as the stairs and second floor balcony.  The 

balcony is wide enough to block sightlines into the master bedroom suite so that it, 

too, can be open to the rest of the house’s large central volume.  Only the garage and 

Figure 6.3.1  The matching roof 
slope on five zones is angled 
to maximize the amount of 
sunlight falling on small vertical 
surfaces.  By placing thinner 
surfaces in these locations, the 
house can trap heat on winter 
days when the sun is low.
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two first floor bedrooms, which absolutely must be separated from the rest of the 

house by doors, are placed in the shorter, flatter zones.

	 The treatment of the exterior is in keeping with the house’s thermal 

adaptations.  The short zones, which cannot reasonably contain the large glazed walls 

and roofs given to them by the GA, are darker in color than the rest of the house in 

order to absorb heat by a different method.  A clerestory band of windows takes the 

Figure 6.3.2  The plan of the Ithaca house contains a large central open space 
separated from smaller subsidiary zones.  In section, the open space is designed to 
receive heat from a low winter sun.

Figure 6.3.3  The façade of the Ithaca house draws attention to two groups of zones.
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place of skylights for the two bedrooms.  The clerestory band also shows up on the 

south faces of the taller zones.  Roof projections over these windows let light enter the 

house in the winter, but keep heat out during the summer when the sun is higher in the 

sky.  These projections also reinforce the house’s adaptation to absorb heat from the 

low winter sun.  A parapet around the roof of the low zones, which serves as a balcony 

to the master bedroom suite, is similar in scale to the projecting roof.  The balcony 

itself takes advantage of the flat surface provided by the GA to add a new function to 

the house; it offers a benefit that could not have been foreseen when the algorithm was 

written.

 

Figure 6.3.4  The Ithaca house in plan and section at 1’ = 1/32” scale.
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Figure 6.3.5  Like the Anchorage house, the Ithaca house experiences heat loss 
through infiltration (green) and conduction (red), but these losses drop off virtually to 
zero in the summer months.

Figure 6.3.6  The GA’s design for the Ithaca house suffers from the poor performance 
of one zone with a glazed roof.  The altered schematic design eliminates this problem.
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6.4  Dubai

	 One trial in Dubai produced several individuals with very tall zones on their 

east sides.  While these towers perform poorly on their own, they have the effect of 

shading the rest of the house through most of the morning, which greatly reduces the 

amount of heat entering the other zones.  Often, several zones in these houses have 

a height of zero, causing the towers to become even taller to keep the total building 

volume constant.

	 In one case, the shaded zones developed several glass sides, almost eliminating 

their need for electric lighting.  The zone receiving the most shade even developed 

a glazed roof.  This is particularly surprising in Dubai, since that zone effectively 

becomes a greenhouse.  Only because the eastern tower keeps the glass roof in shadow 

until 10:30 each morning does the greenhouse not require an exorbitant amount of 

energy for cooling.

	 The schematic design iteration of the Dubai house emphasizes the pinwheel 

configuration of the zones.  Since four of the zones have no volume, most of the rooms 

Figure 6.4.1  Towers on the 
east side (the rear in this view) 
shade the shorter zones in the 
morning.  The small northern 
zone has two glazed walls and 
a glazed roof that could easily 
overheat if this zone were not 
completely shaded until 10:30 
AM each day.
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are pushed off into the two tall zones on the building’s east edge.  The five-story height 

of this tower easily fits these rooms.  The center zone of the house’s nine-square grid 

is empty and serves as a courtyard around which the other zones spiral.  Thanks to the 

tower, this pinwheel effect occurs in three dimensions, not just in plan.  The garage, 

deemed the least necessary room, is not included in the design, and a covered carport 

Figure 6.4.2  The Dubai house’s tower shades 
the neighboring greenhouse in the morning.  
Warm air is drawn out of the greenhouse and 
courtyard through the tower by the stack effect.

Figure 6.4.3  The covered entry to the Dubai house is part of its pinwheel form.
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Figure 6.4.4  The five floors of the Dubai house in plan at 1’ = 1/32” scale.
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replaces its function.  The carport and a similar covered entryway add to the house’s 

pinwheel shape.

	 While the original fitness criteria did not consider passive means of cooling, 

incorporating them into the design can improve the building’s energy efficiency 

beyond that achieved by the GA.  The staircase in the tower provides stack ventilation 

to draw warm air out of the greenhouse.  The water from a fountain in the courtyard 

absorbs heat that would otherwise enter the zones around it.  Brise-soleils over the 

large western windows given to the tower by the GA regulate the entry of sunlight.  

This limits the amount of heat entering the tower during the day without adding the 

need for electric lighting in the evening.

	 The Dubai house is a remarkable demonstration of machine creativity.  A 

reductionist view of sustainable design tells architects that towers and glass boxes are 

both bad ideas in the desert from an environmental perspective.  However, the GA has 

arrived at a solution in which a combination of the tower and glass box outperforms a 

number of more typical building shapes.

Figure 6.4.5  The Dubai house in section at 1’ = 1/32” scale.
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Figure 6.4.6  In Dubai’s hot climate, air infiltration (green) and conduction through 
walls (red) are heat gains rather than losses.  This works against any building in the 
climate because the gains cannot be balanced by losses.

Figure 6.4.7  While it is no surprise that the largest zones in the Dubai house have the 
greatest cooling loads, these loads are small in proportion to the zone’s volumes.
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Chapter 7

POSSIBILITIES

This enhancement of design through the computer touches also upon 

issues related to customization of production.  Instead of a fixed 

design, non-expert users or clients would interact with an open system 

and co-design together with it the desired product, adapted to their 

specifications and particular preferences.  In this setting the new 

role of the designer would be to build systems that allow a multitude 

of possibilities, and to imbue those systems with the capacity for 

proposing feasible and sound suggestions to a user.

Pablo Miranda Carranza, 2001

	 Architecture is a complex adaptive system.  It is made up of many interacting 

components and systems.  Variety in the ways these parts can be assembled gives 

architecture the ability to adapt and evolve.  The architect is in many ways a tinkerer, 

searching for the combinations and arrangements of parts that best suit a specified 

purpose.

	 Because all complex adaptive systems are capable of evolutionary 

improvement, the genetic algorithm (GA) is a useful architectural tool.  This thesis 

shows that deterministic crowding (DC) provides significant improvement in 

thermal performance and interior daylighting in most climates, and the amount of 

improvement increases as the climate becomes more hostile.  Furthermore, a single 

run of a DC algorithm produces a variety of solutions, all of which outperform the 

“average” building design.  Multiple runs of the algorithm only increase the variety of 

solutions found.
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	 Other types of GAs may also be useful, but lack some of the benefits of DC.  

The mu+lambda algorithm achieves better performance and improves at a faster rate, 

but it sacrifices diversity.  Parallel hill-climbers provide more diversity, but many 

solutions have poor thermal performance.

	 The real advantage of the GA is that it finds workable solutions in parts of the 

search space where human architects would not think to look.  Even in fantasy, human 

creativity does not deviate too much from experience.41  When designing a sustainable 

building, architects look to previous examples of sustainability and to reductionist 

principles for guidance.  The computer has no experience or knowledge to guide 

it.  No logic told the GA not to investigate greenhouses in Dubai’s hot climate, since 

the fact that greenhouses heat quickly in the sun was not written into the program.  

Instead, the computer blindly experimented with glazed surfaces and found, against 

all odds, one greenhouse that is sustainable in the desert.  No human architect could 

be expected to comb through values of 81 different parameters looking for a similar 

design.

	 Even still, 81 is a small number of parameters if one wants to describe a 

real building.  Limits on computational speed mean that it will take time for genetic 

algorithms to become practical as architectural form generators.  As the speed of 

evaluations increases, it will be possible to evolve larger populations of more complex 

buildings through greater numbers of generations, increasing the effectiveness of 

the algorithm.  More processing power will also make it practical to evaluate each 

individual for the entire year’s climate data, rather than just one month, and to use 

robust thermal models that are more true-to-life than Ecotect’s admittance method.  

Criteria that examine structure, lifetime cost, egress, and other factors can also be 

41	 Jacob 1161
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added to the concept of fitness.  The resulting early predictions of performance will 

put architects in a better position to begin their designs.

	 Imagine architectural design in a world without computational limits.  A 

neighborhood could be modeled as a living population.  The first agents in this 

artificial life simulation are a collection of randomly placed, randomly generated 

houses.  A population of occupants, based on the demographics of a real city, creates 

a market of supply and demand for homes.42  New houses built in the neighborhood 

are variations on the more successful houses already in existence, while buildings that 

cannot attract occupants are torn down.  Instead of capping the size of the building 

population, scarcity is introduced by limiting the resources and services available 

to the neighborhood.  Over time, the neighborhood adapts to meet the needs of an 

occupant population that in turn changes depending on the housing available to it.   

Order arises naturally without any assumptions on the part of the designer.  Each run 

of the simulation produces a housing development unique to its location’s climate and 

social makeup.

	 Architecture is one of many complex adaptive systems.  Every building is part 

of a vast interconnected web of social systems, economic systems, and ecosystems.  

Recognizing architecture’s complex adaptive properties will give architects an 

advantage when searching for new designs.  Optimization algorithms give architects 

the power to improve the performance, not only of individual building systems, but 

of buildings as a whole.  With this added insight, architects can better respond to the 

needs of the larger complex systems around them.

42	 See Epstein 165 for an artificial life simulation of social forces that shape a neighborhood.
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Appendix A

SOLUTIONS CATALOG

	 Diversity is important both for the algorithm, which needs to assemble its 

solutions from as many fit parts as it can find, and for the architect, who needs to apply 

qualitative criteria to design selection.  Every time the algorithm runs, it generates 

new solutions, giving the architect even more options for moving forward.  The three 

designs taken into the schematic phase in this thesis are some of the algorithm’s 

more creative solutions, but not the only ones.  This appendix catalogs solutions that 

survived through fifty rounds of selection in each of the genetic algorithm trials.  In 

some cases, many very different designs turn out to be quite fit in terms of their energy 

consumption.

	 The fitness scale under each solution shows its performance relative to the best 

individual from that series of trials.  An individual’s fitness may be compared to others 

that use the same fitness criteria.  Hence, Ithaca trials using deterministic crowding 

are comparable to those using the parallel hill-climbing algorithm, but not to trials in 

Anchorage or to those using climate data from the entire year.
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294 kWh DAILY271 kWh DAILY270 kWh DAILY

329 kWh DAILY327 kWh DAILY301 kWh DAILY

390 kWh DAILY345 kWh DAILY332 kWh DAILY

Figure A.1  Solutions from one run of the 
optimization algorithm, seen from the 
southwest.  The top right solution is the basis 
for the Anchorage house.
Location:	 Anchorage
Algorithm:	 Deterministic Crowding
Period:	 January
Trial:	 1
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363 kWh DAILY363 kWh DAILY360 kWh DAILY

436 kWh DAILY434 kWh DAILY370 kWh DAILY

445 kWh DAILY443 kWh DAILY437 kWh DAILY

Figure A.2  Solutions from one run of the 
optimization algorithm, seen from the 
southwest.
Location:	 Anchorage
Algorithm:	 Deterministic Crowding
Period:	 January
Trial:	 2
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251 kWh DAILY245 kWh DAILY237 kWh DAILY

270 kWh DAILY269 kWh DAILY263 kWh DAILY

301 kWh DAILY296 kWh DAILY286 kWh DAILY

Figure A.3  Solutions from one run of the 
optimization algorithm, seen from the 
southwest.
Location:	 Anchorage
Algorithm:	 Deterministic Crowding
Period:	 January
Trial:	 3
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327 kWh DAILY326 kWh DAILY309 kWh DAILY

335 kWh DAILY330 kWh DAILY329 kWh DAILY

375 kWh DAILY347 kWh DAILY345 kWh DAILY

Figure A.4  Solutions from one run of the 
optimization algorithm, seen from the 
southwest.
Location:	 Anchorage
Algorithm:	 Deterministic Crowding
Period:	 January
Trial:	 4



89

342 kWh DAILY338 kWh DAILY335 kWh DAILY

365 kWh DAILY364 kWh DAILY346 kWh DAILY

400 kWh DAILY390 kWh DAILY370 kWh DAILY

Figure A.5  Solutions from one run of the 
optimization algorithm, seen from the 
southwest.  The solution at the left end of the 
second row is the basis for the Dubai house.
Location:	 Dubai
Algorithm:	 Deterministic Crowding
Period:	 August
Trial:	 1
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244 kWh DAILY238 kWh DAILY236 kWh DAILY

261 kWh DAILY255 kWh DAILY250 kWh DAILY

279 kWh DAILY271 kWh DAILY261 kWh DAILY

Figure A.6  Solutions from one run of the 
optimization algorithm, seen from the 
southwest.
Location:	 Dubai
Algorithm:	 Deterministic Crowding
Period:	 August
Trial:	 2
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195 kWh DAILY194 kWh DAILY193 kWh DAILY

215 kWh DAILY209 kWh DAILY205 kWh DAILY

237 kWh DAILY236 kWh DAILY224 kWh DAILY

Figure A.7  Solutions from one run of the 
optimization algorithm, seen from the 
southwest.
Location:	 Dubai
Algorithm:	 Deterministic Crowding
Period:	 August
Trial:	 3
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231 kWh DAILY227 kWh DAILY221 kWh DAILY

242 kWh DAILY239 kWh DAILY238 kWh DAILY

258 kWh DAILY244 kWh DAILY243 kWh DAILY

Figure A.8  Solutions from one run of the 
optimization algorithm, seen from the 
southwest.
Location:	 Dubai
Algorithm:	 Deterministic Crowding
Period:	 August
Trial:	 4
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248 kWh DAILY246 kWh DAILY244 kWh DAILY

259 kWh DAILY258 kWh DAILY253 kWh DAILY

313 kWh DAILY293 kWh DAILY269 kWh DAILY

Figure A.9  Solutions from one run of the 
optimization algorithm, seen from the 
southwest.  The top left solution is the basis 
for the Ithaca house.
Location:	 Ithaca
Algorithm:	 Deterministic Crowding
Period:	 January
Trial:	 1
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194 kWh DAILY182 kWh DAILY180 kWh DAILY

225 kWh DAILY219 kWh DAILY169 kWh DAILY

249 kWh DAILY247 kWh DAILY226 kWh DAILY

Figure A.10  Solutions from one run of 
the optimization algorithm, seen from the 
southwest.
Location:	 Ithaca
Algorithm:	 Deterministic Crowding
Period:	 January
Trial:	 2
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202 kWh DAILY196 kWh DAILY188 kWh DAILY

209 kWh DAILY209 kWh DAILY202 kWh DAILY

295 kWh DAILY236 kWh DAILY214 kWh DAILY

Figure A.11  Solutions from one run of 
the optimization algorithm, seen from the 
southwest.
Location:	 Ithaca
Algorithm:	 Deterministic Crowding
Period:	 January
Trial:	 3
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282 kWh DAILY279 kWh DAILY265 kWh DAILY

361 kWh DAILY346 kWh DAILY320 kWh DAILY

381 kWh DAILY370 kWh DAILY363 kWh DAILY

Figure A.12  Solutions from one run of 
the optimization algorithm, seen from the 
southwest.
Location:	 Ithaca
Algorithm:	 Deterministic Crowding
Period:	 January
Trial:	 4
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181 kWh DAILY180 kWh DAILY179 kWh DAILY

181 kWh DAILY181 kWh DAILY181 kWh DAILY

182 kWh DAILY182 kWh DAILY182 kWh DAILY

Figure A.13  Solutions from one run of 
the optimization algorithm, seen from the 
southwest.
Location:	 Ithaca
Algorithm:	 Mu+Lambda
Period:	 January
Trial:	 1
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149 kWh DAILY149 kWh DAILY149 kWh DAILY

150 kWh DAILY149 kWh DAILY149 kWh DAILY

150 kWh DAILY150 kWh DAILY150 kWh DAILY

Figure A.14  Solutions from one run of 
the optimization algorithm, seen from the 
southwest.
Location:	 Ithaca
Algorithm:	 Mu+Lambda
Period:	 January
Trial:	 2
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154 kWh DAILY153 kWh DAILY153 kWh DAILY

157 kWh DAILY155 kWh DAILY155 kWh DAILY

158 kWh DAILY158 kWh DAILY157 kWh DAILY

Figure A.15  Solutions from one run of 
the optimization algorithm, seen from the 
southwest.
Location:	 Ithaca
Algorithm:	 Mu+Lambda
Period:	 January
Trial:	 3
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323 kWh DAILY255 kWh DAILY251 kWh DAILY

479 kWh DAILY377 kWh DAILY336 kWh DAILY

540 kWh DAILY539 kWh DAILY500 kWh DAILY

Figure A.16  Solutions from one run of 
the optimization algorithm, seen from the 
southwest.
Location:	 Ithaca
Algorithm:	 Parallel Hill-Climber
Period:	 January
Trial:	 1
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345 kWh DAILY296 kWh DAILY264 kWh DAILY

467 kWh DAILY424 kWh DAILY386 kWh DAILY

597 kWh DAILY563 kWh DAILY484 kWh DAILY

Figure A.17  Solutions from one run of 
the optimization algorithm, seen from the 
southwest.
Location:	 Ithaca
Algorithm:	 Parallel Hill-Climber
Period:	 January
Trial:	 2
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345 kWh DAILY296 kWh DAILY264 kWh DAILY

467 kWh DAILY424 kWh DAILY386 kWh DAILY

597 kWh DAILY563 kWh DAILY484 kWh DAILY

Figure A.18  Solutions from one run of 
the optimization algorithm, seen from the 
southwest.
Location:	 Ithaca
Algorithm:	 Parallel Hill-Climber
Period:	 January
Trial:	 3
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122 kWh DAILY113 kWh DAILY110 kWh DAILY

130 kWh DAILY130 kWh DAILY126 kWh DAILY

142 kWh DAILY137 kWh DAILY132 kWh DAILY

Figure A.19  Solutions from one run of 
the optimization algorithm, seen from the 
southwest.
Location:	 Ithaca
Algorithm:	 Deterministic Crowding
Period:	 Full Year
Trial:	 1
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120 kWh DAILY119 kWh DAILY116 kWh DAILY

132 kWh DAILY128 kWh DAILY128 kWh DAILY

140 kWh DAILY135 kWh DAILY134 kWh DAILY

Figure A.20  Solutions from one run of 
the optimization algorithm, seen from the 
southwest.
Location:	 Ithaca
Algorithm:	 Deterministic Crowding
Period:	 Full Year
Trial:	 2
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118 kWh DAILY115 kWh DAILY105 kWh DAILY

127 kWh DAILY126 kWh DAILY125 kWh DAILY

137 kWh DAILY134 kWh DAILY129 kWh DAILY

Figure A.21  Solutions from one run of 
the optimization algorithm, seen from the 
southwest.
Location:	 Ithaca
Algorithm:	 Deterministic Crowding
Period:	 Full Year
Trial:	 3
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Appendix B

FITNESS RESULTS

	 No discussion of a genetic algorithm is complete without graphs of the 

algorithm’s performance.  The graph of fitness results says a lot about the effectiveness 

of an algorithm.  A curve that plateaus too early may have become stranded on a local 

optimum.  One that does not improve quickly in the beginning may have poor linkage 

or lack fit building blocks.  When the entire population bunches around the same 

fitness value, diversity is probably low.

	 This appendix presents fitness graphs from each trial.  Generations from zero 

to forty-nine are listed sequentially on the horizontal axis, while fitness is displayed on 

the vertical axis in kWh per day during the controlling period.  Each dot represents the 

fitness of one individual tested in the corresponding generation of an individual trial.  

A line connecting the each generation’s best individual produces a fitness curve.  The 

average fitness curve from a set of trials gives an indication of the algorithm’s overall 

performance.
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Figure B.1  Fitness 
graphs show the best 
individual in each 
trial, with the mean	
in bold.
Location:	 Anchorage
Algorithm:	 DC
Period:	 January

Figure B.2  Fitness 
graphs show the best 
individual in each 
trial, with the mean 
in bold.
Location:	 Dubai
Algorithm:	 DC
Period:	 August

Figure B.3  Fitness 
graphs show the best 
individual in each 
trial, with the mean 
in bold.
Location:	 Ithaca
Algorithm:	 DC
Period:	 January
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Figure B.4  Fitness 
graphs show the best 
individual in each 
trial, with the mean 
in bold.
Location:	 Ithaca
Algorithm:	µ+λ
Period:	 January
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Figure B.5  Fitness 
graphs show the best 
individual in each 
trial, with the mean 
in bold.
Location:	 Ithaca
Algorithm:	 PHC
Period:	 January

Figure B.6  Fitness 
graphs show the best 
individual in each 
trial, with the mean 
in bold.
Location:	 Ithaca
Algorithm:	 DC
Period:	 Full Year
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Figure B.7  Fitness plots show daily HVAC 
and lighting load in kWh on the vertical axis 
for each member tested in each generation.
Location:	 Anchorage
Algorithm:	 Deterministic Crowding
Period:	 January
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Figure B.8  Fitness plots show daily HVAC 
and lighting load in kWh on the vertical axis 
for each member tested in each generation.
Location:	 Dubai
Algorithm:	 Deterministic Crowding
Period:	 August
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Figure B.9  Fitness plots show daily HVAC 
and lighting load in kWh on the vertical axis 
for each member tested in each generation.
Location:	 Ithaca
Algorithm:	 Deterministic Crowding
Period:	 January
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Figure B.10  Fitness plots show daily HVAC 
and lighting load in kWh on the vertical axis 
for each member tested in each generation.
Location:	 Ithaca
Algorithm:	 Mu+Lambda
Period:	 January
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Figure B.11  Fitness plots show daily HVAC 
and lighting load in kWh on the vertical axis 
for each member tested in each generation.
Location:	 Ithaca
Algorithm:	 Parallel Hill-Climber
Period:	 January
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Figure B.12  Fitness plots show daily HVAC 
and lighting load in kWh on the vertical axis 
for each member tested in each generation.
Location:	 Ithaca
Algorithm:	 Deterministic Crowding
Period:	 Full Year



115 

APPENDIX C 

CODE 

 

This appendix presents the GenerativeComponents (GC) transaction file 

containing the genetic algorithm used in this thesis.  The transaction file was written in 

GC version 08.09.05.43 for MicroStation version 08.09.04.51.  A dynamic-link library 

(DLL) by De Biswas called sg2008EcoPlusDoc.dll allows commands in this code to 

interact with Ecotect version 5.60. 

GC records the process of model making rather than the model itself.  Models 

are constructed through a series of transaction steps.  The first transaction creates the 

variables that define a house. 

 
transaction modelBased "Graph Variables for Geometry" 
{ 
 feature DNA GC.GraphVariable 
 { 
  Value                     = FilledList3d(HouseXDiv, HouseYDiv, 
                HouseParams, 1/DNAStep); 
 } 
 feature DNAStep GC.GraphVariable 
 { 
  Value                     = 6;  // number of alleles for each gene 
 } 
 feature HouseEdge GC.GraphVariable 
 { 
  Value                     = 100; // width of wall around voids, mm 
 } 
 feature HouseName GC.GraphVariable 
 { 
  Value                     = "FinalHouse"; 
 } 
 feature HouseParams GC.GraphVariable 
 { 
  Value                     = 9;  // number of genes per zone 
 } 
 feature HouseSpacing GC.GraphVariable 
 { 
  Value                     = 2 * Max(HouseX * HouseXDiv, 
                HouseY * HouseYDiv); 
                // spacing between houses in population 
 } 
 feature HouseVoid GC.GraphVariable 
 { 
  Value                     = 1;  // threshold value 
 } 
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 feature HouseX GC.GraphVariable 
 { 
  Value                     = 5000;  // width of zone, mm  
 } 
 feature HouseXDiv GC.GraphVariable 
 { 
  Value                     = 3;   // number of zones across 
 } 
 feature HouseY GC.GraphVariable 
 { 
  Value                     = 5000;  // length of zone, mm  
 } 
 feature HouseYDiv GC.GraphVariable 
 { 
  Value                     = 3;   // number of zones deep 
 } 
 feature HouseZ GC.GraphVariable 
 { 
  Value                     = 4000;  // average zone height, mm  
 } 
 feature HouseZMin GC.GraphVariable 
 { 
  Value                     = 2500;  // minimum zone height, mm 
 } 
 feature HouseZRot GC.GraphVariable 
 { 
  Value                     = 0;   // rotation angle of house 
 } 
} 
 

The following transaction, unnecessary but helpful for debugging, creates a 

random genotype for a prototypical house. 

 
transaction script "Dummy DNA", suppressed 
{ 
 for (int i = 0; i < DNA.Count; i++) 
 { 
  for (int j = 0; j < DNA[i].Count; j++) 
  { 
   for (int k = 0; k < DNA[i][j].Count; k++) 
   { 
    DNA[i][j][k] = Random(DNAStep)/DNAStep; 
   } 
  } 
 } 
} 
 

The next transaction contains the actual functions for making a zone and for 

assembling zones into a building.  When run, it creates a prototypical house in GC.  

The prototype house is deleted before the genetic algorithm (GA) is run, but the 

instructions remain accessible for the rest of the transactions. 
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transaction modelBased "Create Proto Building" 
{ 
 feature CSRot GC.CoordinateSystem 
 { 
  Origin                    = baseCS; 
  CoordinateSystem          = baseCS; 
  RotationAngle             = HouseZRot; 
  Axis                      = AxisOption.Z; 
  Visible                   = false; 
 } 
 feature ProtoBuilding GC.Polygon 
 { 
  Function                  = makeBuilding; 
  FunctionArguments         = {CSRot, HouseX, HouseY, HouseZ, HouseXDiv, 
                HouseYDiv, HouseZMin, DNAStep, DNA}; 
 } 
 feature makeBuilding GC.GraphFunction 
 { 
  Definition                = Polygon [][][] function (CoordinateSystem cs, 
                int x, int y, int z, int xDivs, int yDivs, 
                int minZ, int mat, double[][][] dna) 
  { 
   // Find height factor necessary to keep volume constant 
   double zSum = 0; 
   for (int i = 0; i < dna.Count; i++) 
   { 
    for (int j = 0; j < dna[i].Count; j++) 
    { 
     zSum += dna[i][j][0]; 
    } 
   } 
   if (zSum == 0)             // all zones have zero height 
   { 
    for (int i = 0; i < dna.Count; i++) 
    { 
     for (int j = 0; j < dna[i].Count; j++) 
     { 
      dna[i][j][0] = 1/DNAStep; 
      zSum += dna[i][j][0]; 
     } 
    } 
   } 
   double Zn = z * xDivs * yDivs / zSum;     // this is height factor 
    
   // Create base grid for zones 
   Point grid = new Point(); 
   grid.Replication = ReplicationOption.AllCombinations; 
   grid.ByCartesianCoordinates(cs, Series(-x*xDivs/2, x*xDivs/2, x), 
    Series(-y*yDivs/2, y*yDivs/2, y), 0); 
    
   // Create individual zones 
   Polygon [][][] bldg = FilledList3d(xDivs, yDivs, 6); 
   for (int i = 0; i < bldg.Count; i++) 
   { 
    for (int j = 0; j < bldg[i].Count; j++) 
    { 
     bldg[i][j] = makeZone(cs, grid[i][j], grid[i+1][j], grid[i+1][j+1], 
      grid[i][j+1], Zn, minZ, mat, dna[i][j]); 
    } 
   } 
  }; 
 } 
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 feature makeZone GC.GraphFunction 
 { 
  Definition                = Polygon [] function (CoordinateSystem cs, 
                Point SW, Point SE, Point NE, Point NW, 
                double zn, int minZ, int mat, double[] gene) 
  { 
   // Make points around edge of roof 
   double height = 2 * zn * gene[0]; 
   if (gene[0] == 0) 
   { 
    minZ = 0; 
   } 
   Point SWT = new Point().ByCartesianCoordinates(cs, SW.XTranslation, 
    SW.YTranslation, Max(minZ, Min(height-minZ, height*gene[1]))); 
   Point SET = new Point().ByCartesianCoordinates(cs, SE.XTranslation, 
    SE.YTranslation, Max(minZ, Min(height-minZ, height*gene[2]))); 
   Point NET = new Point().ByCartesianCoordinates(cs, NE.XTranslation, 
    NE.YTranslation, Max(minZ, Min(height-minZ, height*(1-gene[1])))); 
   Point NWT = new Point().ByCartesianCoordinates(cs, NW.XTranslation, 
    NW.YTranslation, Max(minZ, Min(height-minZ, height*(1-gene[2])))); 
   Polygon zone = {}; 
    
   // Roof 
   zone[0] = new Polygon(this).ByVertices({SWT, SET, NET, NWT}); 
   this.SymbologyAndLevelUsage = 
    SymbologyAndLevelUsageOption.AssignToFeature; 
   zone[0].Color = gene[3] * mat + 1; 
    
   // South Wall 
   zone[1] = new Polygon(this).ByVertices({SW, SE, SET, SWT}); 
   this.SymbologyAndLevelUsage = 
    SymbologyAndLevelUsageOption.AssignToFeature; 
   zone[1].Color = gene[4] * mat + 1; 
    
   // West Wall 
   zone[2] = new Polygon(this).ByVertices({NW, SW, SWT, NWT}); 
   this.SymbologyAndLevelUsage = 
    SymbologyAndLevelUsageOption.AssignToFeature; 
   zone[2].Color = gene[5] * mat + 1; 
    
   // North Wall 
   zone[3] = new Polygon(this).ByVertices({NE, NW, NWT, NET}); 
   this.SymbologyAndLevelUsage = 
    SymbologyAndLevelUsageOption.AssignToFeature; 
   zone[3].Color = gene[6] * mat + 1; 
    
   // East Wall 
   zone[4] = new Polygon(this).ByVertices({SE, NE, NET, SET}); 
   this.SymbologyAndLevelUsage = 
    SymbologyAndLevelUsageOption.AssignToFeature; 
   zone[4].Color = gene[7] * mat + 1; 
    
   // Floor 
   zone[5] = new Polygon(this).ByVertices({SW, NW, NE, SE}); 
  }; 
 } 
} 
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Having tested the code, the prototype house is now deleted. 

 
transaction modelBased "Delete Proto Building" 
{ 
 deleteFeature CSRot; 
 deleteFeature ProtoBuilding; 
} 
 

The next set of transactions establishes the testing environment in Ecotect.  

First, the variables are defined. 

 
transaction modelBased "Graph Variables for Analysis" 
{ 
 feature ZoneAdjacency GC.GraphVariable 
 { 
  Value                     = 1600;  // Accuracy of Ecotect calculation 
  LimitValueToRange         = true; 
  RangeMinimum              = 100; 
  RangeMaximum              = 2500; 
  RangeStepSize             = 50; 
 } 
 feature ZoneAirSpeed GC.GraphVariable 
 { 
  Value                     = 0.05;  // Air speed, m/s 
  LimitValueToRange         = true; 
  RangeMaximum              = 0.1; 
  RangeStepSize             = 0.01; 
 } 
 feature ZoneClimate GC.GraphVariable 
 { 
  Value                     = "Ithaca"; // Name of .wea climate data file 
 } 
 feature ZoneClothing GC.GraphVariable 
 { 
  Value                     = 1.0;  // Clothing worn by occupants, clo 
  LimitValueToRange         = true; 
  RangeMaximum              = 4.0; 
  RangeStepSize             = 0.25; 
 } 
 feature ZoneDataFreq GC.GraphVariable 
 { 
  Value                     = 1;   // Rate of data collection, days 
  LimitValueToRange         = true; 
  RangeMinimum              = 1; 
  RangeMaximum              = 30; 
  RangeStepSize             = 1; 
 } 
 feature ZoneDayEnd GC.GraphVariable 
 { 
  Value                     = 30;   // Last day of data collection 
  LimitValueToRange         = true; 
  RangeMinimum              = ZoneDayStart; 
  RangeMaximum              = 365; 
  RangeStepSize             = 1; 
 } 
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 feature ZoneDayStart GC.GraphVariable 
 { 
  Value                     = 1;   // First day of data collection 
  LimitValueToRange         = true; 
  RangeMinimum              = 1; 
  RangeMaximum              = 365; 
  RangeStepSize             = 1; 
 } 
 feature ZoneEfficacy GC.GraphVariable 
 { 
  Value                     = 13;   // Efficacy of electric lights, L/W 
  LimitValueToRange         = true; 
  RangeMaximum              = 683; 
 } 
 feature ZoneGrid GC.GraphVariable 
 { 
  Value                     = 3;   // resolution of daylight grid 
  LimitValueToRange         = true; 
  RangeMinimum              = 1; 
  RangeMaximum              = 5; 
  RangeStepSize             = 1; 
 } 
 feature ZoneHourEnd GC.GraphVariable 
 { 
  Value                     = 20;   // Last hour of daylight sampling 
  LimitValueToRange         = true; 
  RangeMinimum              = ZoneHourStart; 
  RangeMaximum              = 23; 
  RangeStepSize             = 1; 
 } 
 feature ZoneHourStart GC.GraphVariable 
 { 
  Value                     = 6;   // First hour of daylight sampling 
  LimitValueToRange         = true; 
  RangeMaximum              = 22; 
  RangeStepSize             = 1; 
 } 
 feature ZoneHumidity GC.GraphVariable 
 { 
  Value                     = 50;   // Relative humidity, % 
  LimitValueToRange         = true; 
  RangeMinimum              = 30; 
  RangeMaximum              = 70; 
  RangeStepSize             = 5; 
 } 
 feature ZoneLights GC.GraphVariable 
 { 
  Value                     = 538;  // Light level, Lux 
  LimitValueToRange         = true; 
  RangeMaximum              = 1000; 
 } 
 feature ZoneOccupancy GC.GraphVariable 
 { 
  Value                     = 2;   // Number of occupants per zone 
  LimitValueToRange         = true; 
  RangeMaximum              = 10; 
  RangeStepSize             = 1; 
 } 
 feature ZoneSunEfficacy GC.GraphVariable 
 { 
  Value                     = 93;   // Efficacy of sun, L/W 
 } 
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 feature ZoneTempMax GC.GraphVariable 
 { 
  Value                     = 24.44; // Top of comfort band, °C 
  LimitValueToRange         = true; 
  RangeMinimum              = ZoneTempMin; 
  RangeMaximum              = 28; 
 } 
 feature ZoneTempMin GC.GraphVariable 
 { 
  Value                     = 22.22; // Bottom of comfort band, °C 
  LimitValueToRange         = true; 
  RangeMinimum              = 18; 
  RangeMaximum              = 28; 
 } 
} 
 

Some functions that interact with Ecotect require a text style.  The style 

defined here is used in calling those functions, though it never appears on screen. 

 
transaction modelBased "Add Text Style" 
{ 
 feature text GC.TextStyle 
 { 
  Height                    = 1000; 
  Width                     = 1000; 
  JustificationSingleLine   = JustificationSingleLine.CenterCenter; 
  TextColor                 = 7; 
 } 
} 
 

The scripts in the following transaction prepare GC to set up zones in Ecotect.  

The first two scripts are not run immediately, but are used later to create lighting and 

operational schedules for each zone and to delete any models that might already be in 

Ecotect.  A third script names each zone with the coordinates of its position.  The final 

feature initializes the zones in Ecotect, although at this point the zones do not contain 

any objects. 

 
transaction modelBased "Add Ecotect Zones" 
{ 
 feature AddSchedule GC.GraphFunction 
 { 
  Definition                = int function (string name, int start, 
                int end) 
  { 
   string driver = ""; 
   Ecotect command = new Ecotect(); // send commands with this object 
    
   // Get index of current schedule 
   command.Request("get.schedule.index " + name, driver); 
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   int index = ToInt(command.Result); 
   if (index < 0) 
   { 
    command.Request("add.schedule " + name, driver); 
                    // makes two schedules with same name 
    index = ToInt(command.Result); 
    command.Execute("schedule.delete " + index, driver); 
                    // delete extra schedule 
    index--;                        // index of first schedule 
   } 
    
   // Set up schedule with default hours of opperation 
   for (int hour = start; hour <= end; hour++) 
   { 
    command.Execute("set.schedule.activation " + index + " 0 " + hour + 
     " 1", driver); 
   } 
   return index; 
  }; 
 } 
 feature ClearEcotect GC.GraphFunction 
 { 
  Definition                = function () 
  { 
   string driver = ""; 
   Ecotect command = new Ecotect(); // send commands with this object 
    
   // Remove objects already in Ecotect model 
   command.Request("get.model.objects", driver); 
   int obj = ToInt(command.Result); 
   while (obj > 0) 
   { 
    obj--; 
    command.Execute("object.delete " + obj, driver); 
   } 
  }; 
 } 
 feature ZoneNames GC.GraphFunction 
 { 
  Definition                = function () 
  { 
   string names = {}; 
   int index = 0; 
   for (int i = 0; i < HouseXDiv; i++) 
   { 
    for (int j = 0; j < HouseYDiv; j++) 
    { 
     names[index++] = "Room_" + i + "_" + j; 
    } 
   } 
   return names; 
  }; 
 } 
 feature Zones GC.EcotectZone 
 { 
  ZoneName                  = ZoneNames(); 
  Thermal                   = {true}; 
  Clothing                  = {ZoneClothing}; 
  AirVelocity_m_per_sec     = {ZoneAirSpeed}; 
  RelativeHumidity          = {ZoneHumidity}; 
  Lighting                  = {ZoneLights}; 
 } 
} 
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The next script sends information about the site and zones to Ecotect.  This 

information includes where to find the climate data, a list of materials and their 

properties, the operation schedules and other settings for each zone, and the camera 

position for capturing images of each design variant.  The script also retrieves 

information on the amount of daylight available throughout the year for later use when 

calculating electric lighting requirements. 

 
transaction script "Set Up Ecotect" 
{ 
 string driver = ""; 
 Ecotect command = new Ecotect(); // send commands with this object 
  
 command.Execute("script.start", driver); 
 command.Execute("app.minimise true", driver); 
  
 // Remove objects already in Ecotect model 
 ClearEcotect(); 
  
 // Set up current project 
 command.Execute("set.project.title " + HouseName, driver);  // Project name 
 command.Execute("set.project.type 0", driver);      // Domestic dwelling 
 command.Execute("weather.load.all " + CurrentDirectory() + "Climate Data\\" 
  + ZoneClimate + ".wea", driver);   // Weather File 
  
 // set up materials 
 int mat; 
 bool window; 
 for (int i = 0; i < DNAStep; i++) 
 { 
  mat = i + 51; 
  window = (i < DNAStep/2)? true : false;   // lower numbers are windows 
  command.Execute("set.material.name " + mat + " Material" + i, driver); 
         // change name of a material (currently listed as a panel) 
   
  // Thermal properties 
  command.Execute("set.material.uvalue " + mat + " " + 
   Pow(36, 0.5 - i/DNAStep), driver);    // set U-value (W/m^2-K) 
  command.Execute("set.material.admittance " + mat + " " + 
   Pow(36, 0.5 - i/DNAStep), driver);    // set admittance (W/m^2-K) 
  command.Execute("set.material.absorption " + mat + " " + 
   (window? 1-(i+0.5)/DNAStep : i/DNAStep), driver); 
  // set solar absorbtion for wall, solar heat gain coef. for window (0-1) 
  command.Execute("set.material.transparency " + mat + " " + 
   (window? 1-(i+0.5)/DNAStep : 0), driver); 
                     // set visible transmittance (0-1) 
  command.Execute("set.material.decrement " + mat + " " + 
   (window? 1.74 : 1-i/DNAStep), driver); 
    // set thermal decrement for wall (0-1), refractive index for window 
  command.Execute("set.material.lag " + mat + " " + (window? 0.3 : i), 
   driver); 
    // set thermal lag for wall (hours), alternate solar gain for window 
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  // Set everything else equal 
  command.Execute("set.material.colour " + mat + 
   (window? " 0xC1C1B0 0xC1C1B0" : " 0x919191 0x919191"), driver); 
    // change name of a material (currently listed as a panel) 
  command.Execute("set.material.extemissivity " + mat + " " + 
   (window? i/DNAStep : 0.9), driver);              // (0-1) 
  command.Execute("set.material.extroughness " + mat + " 0", driver); 
                                  // (0-1) 
  command.Execute("set.material.extspecularity " + mat + " 0", driver); 
                                  // (0-1) 
  command.Execute("set.material.intemissivity " + mat + " " + 
   (window? i/DNAStep : 0.9), driver);              // (0-1) 
  command.Execute("set.material.introughness " + mat + " 0", driver); 
                                  // (0-1) 
  command.Execute("set.material.intspecularity " + mat + " 0", driver); 
                                  // (0-1) 
  command.Execute("set.material.reflectance " + mat + " " + 
   (window? 0.7 - i/DNAStep/10 : 0.5 - i/DNAStep/10), driver); 
            // brightens or darkens color that was set above(0-1) 
  command.Execute("set.material.type " + mat + " " + (window? 6 : 4), 
   driver);            // set material type to window or wall 
 } 
  
 // Set up schedules 
 int op = AddSchedule("Opperation", 0, 23); 
 int lit = {}; 
 for (int i = 0; i < HouseXDiv; i++) 
 { 
  for (int j = 0; j < HouseYDiv; j++) 
  { 
   lit[i*HouseYDiv+j] = AddSchedule("Lighting_" + i + "_" + j, 
    ZoneHourStart, ZoneHourEnd); 
  } 
 } 
  
 // Set up daylight calculation properties 
 command.Execute("set.attribute.scale 0 10", driver); 
                // set color scale from 0-10% daylight factor 
 command.Execute("set.calc.precision high", driver);    // accuracy 
 command.Execute("set.calc.sky overcast", driver);     // sky condition 
 command.Execute("set.calc.windows 1", driver); 
                     // 90% transmission through windows 
 double availableLux = FilledList2d(ZoneDayEnd - ZoneDayStart + 1, 24); 
 double beam, diffuse; 
 for (int day = ZoneDayStart; day <= ZoneDayEnd; day++) 
 { 
  for (int hour = 0; hour < 24; hour++) 
  { 
   command.Request("get.weather.beamsolar " + day + " " + hour, driver); 
              // Get available direct solar radiation (W/m^2) 
   beam = ToDouble(command.Result); 
   command.Request("get.weather.diffusesolar " + day + " " + hour, 
    driver);      // Get available diffuse solar radiation (W/m^2) 
   diffuse = ToDouble(command.Result); 
   availableLux[day-ZoneDayStart][hour] = ZoneSunEfficacy * 
    (beam + diffuse); 
  } 
 } 
 GraphVariable AL = new 
  GraphVariable("AvailableLux").EvaluateExpression(availableLux); 
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 // Set up each zone 
 command.Execute("calc.adjacencies " + ZoneAdjacency + " true", driver); 
  // calculate adjacencies, fewer samples, include shading mask 
 for (int i = 1; i <= HouseXDiv * HouseYDiv; i++) 
 { 
  command.Execute("set.zone.airspeed " + i + " " + ZoneAirSpeed, driver); 
                            // Air Velocity, m/s 
  command.Execute("set.zone.clothing " + i + " " + ZoneClothing, driver); 
                            // Clothing, clo 
  command.Execute("set.zone.lux " + i + " " + ZoneLights, driver); 
                            // Lighting, lux 
  command.Execute("set.zone.occupancy " + i + " " + ZoneOccupancy, driver); 
                            // People, # 
  command.Execute("set.zone.lowerband " + i + " " + ZoneTempMin, driver); 
                       // Temperature, 72 F = 22.22 C 
  command.Execute("set.zone.upperband " + i + " " + ZoneTempMax, driver); 
                       // Temperature, 76 F = 24.44 C 
  command.Execute("set.zone.relhumidity " + i + " " + ZoneHumidity, 
   driver);                // Relative Humidity, % 
  command.Execute("set.zone.thermal " + i + " true", driver); 
                       // Zone is thermal 
  command.Execute("set.zone.system " + i + " airconditioning", driver); 
                       // Zone is fully airconditioned 
  command.Execute("set.zone.sensiblegains " + i + " " + 
   ZoneLights/ZoneEfficacy, driver);    // Heat gains from lights 
  command.Execute("set.zone.schedules " + i + " " + op + " " + op + " " + 
   lit[i-1], driver);   // Occupancy, Ventilation, and Gains Schedules 
 } 
  
 // Set up openGL 
 command.Execute("set.app.page 2", driver);      // bring up openGL frame 
 command.Execute("set.opengl.grid.max " + (HouseX*HouseXDiv/2+1500) + " " + 
  (HouseY*HouseYDiv/2+1500) + " 0", driver);   // set display grid max 
 command.Execute("set.opengl.grid.min " + (-HouseX*HouseXDiv/2-1500) + " " + 
  (-HouseY*HouseYDiv/2-1500) + " 0", driver);     // set display grid min 
 command.Execute("set.opengl.eyept 20000 -40000 30000", driver); 
                          // set camera position 
 command.Execute("set.opengl.target 0 0 6000", driver); // aim camera 
 command.Execute("set.opengl.nearclip 10000", driver); 
                          // near clipping plane 
 command.Execute("set.opengl.farclip 80000", driver); 
                          // far clipping plane 
  
 command.Execute("script.end", driver); 
} 
 

The next transaction contains three scripts that will be used later in the 

algorithm.  The first references an earlier transaction to create a house in GC and 

copies that house into Ecotect by sending commands through the DLL.  The second 

instructs Ecotect to calculate daylight factors in each zone.  The final script tells 

Ecotect to calculate thermal loads for each day.  It combines the loads with the 

daylight factor information to calculate the house’s average daily energy requirement, 

which will serve later as the measure of fitness. 
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transaction modelBased "Evaluation Functions" 
{ 
 feature ExportBldg GC.GraphFunction 
 { 
  Definition                = function (string name, CoordinateSystem cs, 
                double[][][] dna) 
  { 
   string driver = ""; 
   Ecotect command = new Ecotect();  // send commands with this object 
    
   // Remove objects already in Ecotect model 
   ClearEcotect(); 
    
   // Construct house 
   Polygon bldg = new Polygon(name).ByFunction(makeBuilding, {cs, HouseX, 
    HouseY, HouseZ, HouseXDiv, HouseYDiv, HouseZMin, DNAStep, dna}); 
    
   // Export house to Ecotect 
   command.Execute("set.app.page 1", driver); // bring up 3D editor frame 
   Polygon room, opening; 
   Point VTL, VTR; 
   int zone = 1; 
   for (int i = 0; i < HouseXDiv; i++) 
   { 
    for (int j = 0; j < HouseYDiv; j++) 
    { 
     if (dna[i][j][0] > 0) 
     { 
      command.Execute("set.zone.off " + zone + " false", driver); 
                             // Zone is thermal 
      room = Sublist(bldg, 6*(i*HouseYDiv + j), 6); 
      EcotectPolygonObject eco = new EcotectPolygonObject(); 
      eco.EcotectObjectFromPolygonList(room, zone, 
       EcotectMaterial.ConcSlab_OnGround, false, text); 
      for (int k = 0; k < room.Count; k++) 
      { 
       if (room[k].Color > 0) 
       { 
        command.Execute("set.object.type " + eco.ObjectID[k] + " " + 
         ((room[k].Color-1 < DNAStep/2)? 6 : 4), driver); 
                    // set object type as window or wall 
        command.Execute("set.object.material " + eco.ObjectID[k] + 
         " Material" + (room[k].Color-1), driver); 
                    // set material as window or wall 
        command.Execute("set.object.alternate " + eco.ObjectID[k] + 
         " Material" + Ceiling(DNAStep/2), driver); 
                    // alternate material for partitions 
       } 
       else 
       { 
        command.Execute("set.object.type " + eco.ObjectID[k] + " 2", 
         driver);       // set object type as floor; 
       } 
      } 
       
      // Add voids 
      if (i < HouseXDiv-1) 
      { 
        if (dna[i][j][8] + dna[i+1][j][8] > HouseVoid && 
        dna[i+1][j][0] > 0) 
       { 
        VTL = new Point().ByCartesianCoordinates(cs, 
         room[4].Vertices[0].XTranslation, 
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         room[4].Vertices[0].YTranslation, HouseZMin); 
        VTR = new Point().ByCartesianCoordinates(cs, 
         room[4].Vertices[1].XTranslation, 
         room[4].Vertices[1].YTranslation, HouseZMin); 
        opening = new Polygon().ByVertices({room[4].Vertices[0], 
         room[4].Vertices[1], VTR, VTL}); 
        EcotectPolygonObject voi = new EcotectPolygonObject(); 
        voi.EcotectObjectFromPolygonList({opening}, zone, 
         EcotectMaterial.Void, false, text); 
        command.Execute("set.object.type " + voi.ObjectID[0] + " 0", 
         driver);            // set object type as void; 
        command.Execute("object.link " + eco.ObjectID[4] + " " + 
         voi.ObjectID[0], driver); 
                 // set object to be child of another object 
        command.Execute("set.object.child.extents "+voi.ObjectID[0]+ 
         " "+HouseEdge+" "+HouseEdge+" "+(HouseX-2*HouseEdge)+ 
         " "+(HouseZMin-2*HouseEdge), driver); 
       } 
      } 
      if (j < HouseYDiv-1) 
      { 
       if (dna[i][j][8] + dna[i][j+1][8] > HouseVoid && 
        dna[i][j+1][0] > 0) 
       { 
        VTL = new Point().ByCartesianCoordinates(cs, 
         room[3].Vertices[0].XTranslation, 
         room[3].Vertices[0].YTranslation, HouseZMin); 
        VTR = new Point().ByCartesianCoordinates(cs, 
         room[3].Vertices[1].XTranslation, 
         room[3].Vertices[1].YTranslation, HouseZMin); 
        opening = new Polygon().ByVertices({room[3].Vertices[1], 
         room[3].Vertices[0], VTL, VTR}); 
        EcotectPolygonObject voi = new EcotectPolygonObject(); 
        voi.EcotectObjectFromPolygonList({opening}, zone, 
         EcotectMaterial.Void, false, text); 
        command.Execute("set.object.type " + voi.ObjectID[0] + " 0", 
         driver);            // set object type as void; 
        command.Execute("object.link " + eco.ObjectID[3] + " " + 
         voi.ObjectID[0], driver); 
                 // set object to be child of another object 
        command.Execute("set.object.child.extents "+voi.ObjectID[0]+ 
         " "+HouseEdge+" "+HouseEdge+" "+(HouseY-2*HouseEdge)+ 
         " "+(HouseZMin-2*HouseEdge), driver); 
       } 
      } 
     } 
     else                 // Zone is not thermal 
     { 
      command.Execute("set.zone.off " + zone + " true", driver); 
     } 
     zone++; 
    } 
   } 
   command.Execute("view.fitgrid", driver); 
   command.Execute("calc.volumes", driver);  // recalculate volume of zone 
  }; 
 } 
 feature TestDaylight GC.GraphFunction 
 { 
  Definition                = double [][] function (CoordinateSystem cs) 
  { 
   string driver = ""; 
   Ecotect command = new Ecotect(); // send commands with this object 
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   // Create analysis grid 
   double Xs = Series(-HouseX*HouseXDiv/2 + HouseX/ZoneGrid/2, 
    HouseX*HouseXDiv/2 - HouseX/ZoneGrid/2, HouseX/ZoneGrid); 
   double Ys = Series(-HouseY*HouseYDiv/2 + HouseY/ZoneGrid/2, 
    HouseY*HouseYDiv/2 - HouseY/ZoneGrid/2, HouseY/ZoneGrid); 
   Point grid = new Point(); 
   grid.Replication = ReplicationOption.AllCombinations; 
   grid.ByCartesianCoordinates(cs, Xs, Ys, 1000); 
   EcotectPointObject daylightGrid = new 
    EcotectPointObject().EcotectObjectFromPointGrid(grid, 0, 
    EcotectMaterial.ConstructionLine, false, text); 
    
   // Perform calculation in Ecotect 
   command.Execute("calc.lighting points daylight false", driver); 
                 // Calculate daylight at all point objects 
    
   // Read data from each gridpoint 
   int obj, off; 
   int points = Pow(ZoneGrid, 2); 
   double [][] daylightFactor = FilledList2d(ZoneGrid, ZoneGrid, 0); 
   int zone = 1; 
   for (int i = 0; i < HouseXDiv; i++) 
   { 
    for (int j = 0; j < HouseYDiv; j++) 
    { 
     command.Request("get.zone.off " + zone, driver); 
     off = ToInt(command.Result); 
     if (off < 1)    // zone is on 
     { 
      for (int m = 0; m < ZoneGrid; m++) 
      { 
       for (int n = 0; n < ZoneGrid; n++) 
       { 
        obj = daylightGrid.ObjectID[i*ZoneGrid+m][j*ZoneGrid+n]; 
        command.Request("get.object.attr1 " + obj, driver); 
                         // retrieve daylight factor 
        daylightFactor[i][j] += ToDouble(command.Result) / 100; 
       } 
      } 
      daylightFactor[i][j] /= points;  // mean daylight factor in zone 
     } 
     zone++; 
    } 
   } 
   return daylightFactor; 
  }; 
 } 
 feature TestLoads GC.GraphFunction 
 { 
  Definition                = double function (double [][] df) 
  { 
   string driver = ""; 
   Ecotect command = new Ecotect(); // send commands with this object 
    
   double avgLoads = 0;     // average daily electricity consuption 
   double dailySum, lightDeficit; 
   int calcDays = 0; 
   int schedule; 
   for (int day = ZoneDayStart; day <= ZoneDayEnd; day += ZoneDataFreq) 
   { 
    dailySum = 0; 
    command.Execute("set.model.dayoftheyear " + day, driver); 
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    // Set up daily lighting schedule 
    for (int i = 0; i < HouseXDiv; i++) 
    { 
     for (int j = 0; j < HouseYDiv; j++) 
     { 
      command.Request("get.schedule.index Lighting_" + i + "_" + j, 
       driver); 
      schedule = ToInt(command.Result); 
      for (int hour = ZoneHourStart; hour <= ZoneHourEnd; hour++) 
      { 
       lightDeficit = Max(1 - AvailableLux[day-ZoneDayStart][hour] * 
        df[i][j] / ZoneLights, 0); 
              // normalized value: maximum artificial lighting 
       command.Execute("set.schedule.activation " + schedule + " 0 " + 
        hour + " " + lightDeficit, driver); 
       dailySum += lightDeficit * ZoneLights / ZoneEfficacy * HouseX * 
        HouseY / 1000000; 
         // contribution from electric lighting each hour, in watts 
      } 
     } 
    } 
     
    // Calculate gains 
    command.Execute("calc.thermal.gains", driver); 
    if (day == ZoneDayStart) command.Execute("set.app.page 3", driver);     
                         // bring up analysis frame 
    for (int hour = ZoneHourStart; hour <= ZoneHourEnd; hour++) 
    { 
     command.Request("get.results.array 0 " + hour, driver); 
     dailySum += Abs(ToDouble(command.Result)); 
               // contribution from HVAC system, in watt-hours 
    } 
    avgLoads += dailySum; 
    calcDays++; 
   } 
   return avgLoads / calcDays / 1000;          // kWh into building daily 
  }; 
 } 
} 
 

The next transaction recreates the prototype house and evaluates it in Ecotect.  

This is not a necessary step, but it is useful in debugging. 

 
transaction script "Transfer Test", suppressed 
{ 
 string driver = ""; 
 Ecotect command = new Ecotect();     // send commands with this object 
  
 command.Execute("script.start", driver); 
 command.Execute("app.activate", driver); 
 command.Execute("app.minimise false", driver); 
  
 CoordinateSystem cs = new 
  CoordinateSystem("CS").ByOriginRotationAboutCoordinateSystem(baseCS, 
  baseCS, HouseZRot, AxisOption.Z); 
 cs.Visible = false; 
 ExportBldg(HouseName, cs, DNA);       // make house in GC and Ecotect 
 double [][] daylightFactor = TestDaylight(cs); // calcuate dayligh factor 
 double load = TestLoads(daylightFactor);       // calculate fitness 
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 Print("Load: " + load + " kWh"); 
  
 command.Execute("script.end", driver); 
} 
 

The next series of transactions runs the GA.  First, variables are defined. 

 
transaction modelBased "Graph Variables for Genetic Algorithm" 
{ 
 feature ActivateEcotect GC.GraphVariable 
 { 
  Value                     = true;  // Controls visibility of Ecotect 
 } 
 feature DetCrowding GC.GraphVariable 
 { 
  Value                     = true;  // Chooses DC or Mu+Lambda 
 } 
 feature DisplayAll GC.GraphVariable 
 { 
  Value                     = true;  // Saves all tested individuals 
 } 
 feature ExportData GC.GraphVariable 
 { 
  Value                     = true;  // Saves data in a CSV file 
 } 
 feature GAGenerations GC.GraphVariable 
 { 
  Value                     = 50;   // Number of generations 
 } 
 feature GAKeepRate GC.GraphVariable 
 { 
  Value                     = 0.5;  // Fraction of population to keep 
  LimitValueToRange         = true; 
  RangeMaximum              = 1; 
 } 
 feature GAMaxFit GC.GraphVariable 
 { 
  Value                     = 2000;  // Initial extent of graph 
  LimitValueToRange         = true; 
  RangeMinimum              = 100; 
  RangeMaximum              = 10000; 
  RangeStepSize             = 100; 
 } 
 feature GAMaxVar GC.GraphVariable 
 { 
  Value                     = 1.0;  // Initial extent of graph 
  LimitValueToRange         = true; 
  RangeMinimum              = 0.1; 
  RangeMaximum              = 1.0; 
  RangeStepSize             = 0.1; 
 } 
 feature GAMinFit GC.GraphVariable 
 { 
  Value                     = 1000;  // Initial extent of graph 
  LimitValueToRange         = true; 
  RangeMinimum              = 0; 
  RangeMaximum              = GAMaxFit - 100; 
  RangeStepSize             = 100; 
 } 
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 feature GAMutCopyProb GC.GraphVariable 
 { 
  Value                     = 0.1;  // Probability of copying a zone 
  LimitValueToRange         = true; 
  RangeMaximum              = 1 - GAMutCrossProb - GAMutSwitchProb; 
 } 
 feature GAMutCrossProb GC.GraphVariable 
 { 
  Value                     = 0.5;   // Probability of crossover 
  LimitValueToRange         = true; 
  RangeMaximum              = 1.0; 
 } 
 feature GAMutProb GC.GraphVariable 
 { 
  Value                     = 0.03;   // Mutation during crossover 
  LimitValueToRange         = true; 
  RangeMaximum              = 1.0; 
 } 
 feature GAMutRotProb GC.GraphVariable 
 { 
  Value                     = 0.2;   // Probability of zone rotation 
  LimitValueToRange         = true; 
  RangeMaximum              = 1 - GAMutCrossProb - GAMutSwitchProb – 
                GAMutCopyProb; 
 } 
 feature GAMutSwitchProb GC.GraphVariable 
 { 
  Value                     = 0.1;   // Probability of switching zones 
  LimitValueToRange         = true; 
  RangeMaximum              = 1 - GAMutCrossProb; 
 } 
 feature GAPopSize GC.GraphVariable 
 { 
  Value                     = 10;    // Population size 
 } 
 feature Photograph GC.GraphVariable 
 { 
  Value                     = false;  // Record image of each individual 
 } 
 feature SaveModels GC.GraphVariable 
 { 
  Value                     = true;   // Save Ecotect models for fittest 
 } 
} 
 

The next transaction creates a graph in a separate window to record the fitness 

of each individual tested.  By creating an additional coordinate system to act as a scale 

factor, the graph can be scaled after the points are plotted. 

 
transaction modelBased "Create Fitness Plot" 
{ 
 feature FitnessFrame GC.LawCurveFrame 
 { 
  Plane                     = FitnessPlotCS.XYPlane; 
  Xdimension                = GAGenerations; 
  Ydimension                = 0.75*GAGenerations; 
  Xaxis                     = Series(0, GAGenerations, 
                Max(GAGenerations/10, 1)); 
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  Yaxis                     = Series(GAMinFit, GAMaxFit, 
                (GAMaxFit - GAMinFit)/10); 
  XaxisName                 = "Generation"; 
  YaxisName                 = "Fitness"; 
  FormatXaxisAsInteger      = true; 
  AnnotationSize            = GAGenerations*0.02; 
 } 
 feature FitnessPlotCS GC.CoordinateSystem 
 { 
  ModelName                 = "FitnessPlot"; 
  Visible                   = false; 
 } 
 feature FitnessScaleCS GC.CoordinateSystem 
 { 
  CoordinateSystem          = FitnessPlotCS; 
  XTranslation              = 0; 
  YTranslation              = -0.75*GAGenerations*GAMinFit / 
                (GAMaxFit - GAMinFit); 
  ZTranslation              = 0; 
  XRotation                 = 0; 
  YRotation                 = 0; 
  ZRotation                 = 0; 
  YScale                    = FitnessFrame.Ydimension / 
                (GAMaxFit - GAMinFit); 
  Visible                   = false; 
 } 
} 
 

Another graph will record each gene’s variance in each generation.  For 

simplicity, the variances of corresponding genes from each zone are averaged. 

 
transaction modelBased "Create Variance Plot" 
{ 
 feature VarianceFrame GC.LawCurveFrame 
 { 
  Plane                     = VariancePlotCS.XYPlane; 
  Xdimension                = GAGenerations; 
  Ydimension                = 0.75*GAGenerations; 
  Xaxis                     = Series(0, GAGenerations, 
                Max(GAGenerations/10, 1)); 
  Yaxis                     = Series(0, GAMaxVar, GAMaxVar/10); 
  XaxisName                 = "Generation"; 
  YaxisName                 = "Variance"; 
  FormatXaxisAsInteger      = true; 
  AnnotationSize            = GAGenerations*0.02; 
 } 
 feature VariancePlotCS GC.CoordinateSystem 
 { 
  ModelName                 = "VariancePlot"; 
  Visible                   = false; 
 } 
 feature VarianceScaleCS GC.CoordinateSystem 
 { 
  CoordinateSystem          = VariancePlotCS; 
  XTranslation              = 0; 
  YTranslation              = 0; 
  ZTranslation              = 0; 
  XRotation                 = 0; 
  YRotation                 = 0; 
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  ZRotation                 = 0; 
  YScale                    = VarianceFrame.Ydimension / GAMaxVar; 
  Visible                   = false; 
 } 
} 
 

This very long transaction contains scripts associated with the actual GA.  The 

first script contains the variation operators used in both deterministic crowding (DC) 

and mu+lambda (µ+λ).  The next two scripts are the DC and µ+λ algorithms 

themselves.  (Parallel hill-climbing uses the deterministic crowding script.)  The last 

two functions calculate the Hamming distance between genotypes (used by DC) and 

save Ecotect models of the final population from each trial after the GA has run. 

 
transaction modelBased "Genetic Algorithm Functions" 
{ 
 feature CrossOver GC.GraphFunction 
 { 
  Definition                = double [][][] function (double [][][] mother, 
                double [][][] father) 
  { 
   int a, b, c, d;                 // crossover variables 
   double [][][] child = mother; 
    
   // mate best from previous generation to create offspring 
   if (Random() < GAMutCrossProb) 
   { 
    int dnaDimSum = child.Count + child[0].Count + child[0][0].Count; 
    a = Random(-10, 10); 
    b = Random(-10, 10); 
    c = Random(-10, 10); 
    d = Random(-dnaDimSum/2, dnaDimSum/2); 
     
    for (int i = 0; i < child.Count; i++) 
    { 
     for (int j = 0; j < child[i].Count; j++) 
     { 
      for (int k = 0; k < child[i][j].Count; k++) 
      { 
       if (a*(i-(child.Count-1)/2) + b*(j-(child[i].Count-1)/2) + 
        c*(k-(child[i][j].Count-1)/2) > d) 
       { 
        child[i][j][k] = father[i][j][k]; 
       } 
       if (Random() < GAMutProb) 
       { 
        child[i][j][k] = Random(DNAStep)/DNAStep; 
       } 
      } 
     } 
    } 
   } 
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   // switch two zones from a previous individual to create offspring 
   else if (Random() < GAMutSwitchProb / (1-GAMutCrossProb)) 
   { 
    a = Random(child.Count); 
    b = Random(child[0].Count); 
    c = Random(child.Count); 
    d = Random(child[0].Count); 
    child[a][b] = mother[c][d]; 
    child[c][d] = mother[a][b]; 
   } 
    
   // duplicate a zone within a previous individual to create offspring 
   else if (Random() < GAMutCopyProb / (1-GAMutCrossProb-GAMutSwitchProb)) 
   { 
    a = Random(child.Count); 
    b = Random(child[0].Count); 
    c = Random(child.Count); 
    d = Random(child[0].Count); 
    child[a][b] = mother[c][d]; 
   } 
    
   // rotate a zone within a previous individual to create offspring 
   else if (Random() < GAMutRotProb / 
    (1-GAMutCrossProb-GAMutSwitchProb-GAMutCopyProb)) 
   { 
    a = Random(child.Count); 
    b = Random(child[0].Count); 
    c = Random(3) + 1;    // number of times to rotate 90 degrees ccw 
    for (int i = 0; i < c; i++) 
    { 
     d = child[a][b][1];   // switch genes that control roof angles 
     child[a][b][1] = 1 - child[a][b][2]; 
     child[a][b][2] = d; 
     d = child[a][b][7];   // switch genes that control side materials 
     child[a][b][7] = child[a][b][6]; 
     child[a][b][6] = child[a][b][5]; 
     child[a][b][5] = child[a][b][4]; 
     child[a][b][4] = d; 
    } 
   } 
    
   // mutate best from parent generation to create offspring 
   else 
   { 
    a = Random(child.Count); 
    b = Random(child[0].Count); 
    c = Random(child[0][0].Count); 
    child[a][b][c] = Random(DNAStep)/DNAStep; 
   } 
   return child; 
  }; 
 } 
 feature DeterministicCrowding GC.GraphFunction 
 { 
  Definition                = function (int loop) 
  { 
   string driver = "";  
   Ecotect command = new Ecotect(); // send commands with this object 
    
   //                      --- VARIABLES FOR GENETIC ALGORITHM --- 
    
   // DNA 
   double dna = FilledList3d(HouseXDiv, HouseYDiv, HouseParams); 
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   double child = FilledList(GAPopSize, dna);  // contains all offspring 
   double parent = FilledList(GAPopSize, dna);  // contains all parents 
    
   // Crowding 
   double randoms = FilledList(GAPopSize);  // list of random numbers 
   int matings = FilledList(GAPopSize);   // indeces of mating pairs 
   int temp; 
    
   // Fitness 
   double [][] df;              // daylight factors 
   double fitness = {};           // fitness of each offspring 
   int sorted = {};             // indeces sorted by fitness 
   int best;                 // index of best offspring 
   double minFit = Pow(10,10);  // initialize with a very large number 
   double maxFit = 0; 
   double parentFitness = FilledList(GAPopSize, minFit); 
   string lineOut;              // output to CSV file 
    
   // Variance 
   double var = dna;             // variance of each gene 
   double rmsVar = {};      // average variance in each generation 
   double maxVar = GAMaxVar.RangeStepSize; 
   PolyLine varCurve = {}; 
   Point vplot = {}; 
   for (int gene = 0; gene < dna[0][0].Count; gene++) 
    vplot[gene] = {};         // second dim will be generations 
    
   // Data to watch 
   double volume = FilledList(GAPopSize, 0); 
   double surfArea = FilledList(GAPopSize, 0); 
   double windowArea = FilledList(GAPopSize, 0); 
   double floorArea = FilledList(GAPopSize, 0); 
    
   //                      --- PREPARE OUTPUT FILE --- 
    
   if (ExportData) 
   { 
    lineOut = "Fitness_DC#" + RunID; 
    lineOut += ",Volume_DC#" + RunID; 
    lineOut += ",SurfArea_DC#" + RunID; 
    lineOut += ",WindowArea_DC#" + RunID; 
    lineOut += ",Floor_DC#" + RunID; 
    lineOut += ",ZVar_DC#" + RunID; 
    lineOut += ",XVar_DC#" + RunID; 
    lineOut += ",YVar_DC#" + RunID; 
    lineOut += ",TVar_DC#" + RunID; 
    lineOut += ",SVar_DC#" + RunID; 
    lineOut += ",WVar_DC#" + RunID; 
    lineOut += ",NVar_DC#" + RunID; 
    lineOut += ",EVar_DC#" + RunID; 
    lineOut += ",VVar_DC#" + RunID; 
    lineOut += ",DNA_" + dna.Count + "x" + dna[0].Count + "x" + 
     dna[0][0].Count; 
    lineOut += "," + ZoneClimate; 
    OpenPrintFile(CurrentDirectory() + "Results\\Data"+RunID+".csv"); 
    Print(lineOut); 
    ClosePrintFile(); 
   } 
   if (Photograph) 
   { 
    command.Execute("set.movie.type jpg", driver); 
    command.Execute("movie.record " + CurrentDirectory() + 
     "Results\\Movie" + RunID + ".jpg", driver); 
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   } 
    
   //                      --- PREPARE COORDINATE SYSTEM --- 
    
   string name; 
   CoordinateSystem cs; 
   if (DisplayAll) 
   { 
    cs = new CoordinateSystem("CSgrid");    // create grid of houses 
    cs.Replication = ReplicationOption.AllCombinations; 
    cs.ByCartesianCoordinates(baseCS, 
     Series(0, (GAPopSize-1)*HouseSpacing, HouseSpacing), 
     Series(0, (GAGenerations-1)*HouseSpacing, HouseSpacing), 0); 
    cs.Visible = false; 
   } 
   else 
   { 
    cs = baseCS;            // build all houses at same point 
   } 
    
   //                      --- CREATE POPULATION --- 
    
   for (int gen = 0; gen < GAGenerations; gen++) 
   { 
    // accumulate gene sums in dna array to measure variance 
    dna = FilledList3d(dna.Count, dna[0].Count, dna[0][0].Count, 0); 
    var = FilledList3d(dna.Count, dna[0].Count, dna[0][0].Count, 0); 
    rmsVar = FilledList(dna[0][0].Count, 0); 
     
    // build random list of indeces for mating pairs 
    for (int i = 0; i < GAPopSize; i++) 
    { 
     randoms[i] = Random(); 
    } 
    matings = SortIndices(randoms, function(x,y){return x<y;}); 
     
    for (int pop = 0; pop < GAPopSize-1; pop += 2) 
    { 
     // Create individual's DNA 
     if (gen == 0)          // create new starting population 
     { 
      for (int i = 0; i < child[pop].Count; i++) 
      { 
       for (int j = 0; j < child[pop][i].Count; j++) 
       { 
        for (int k = 0; k < child[pop][i][j].Count; k++) 
        { 
         child[matings[pop]][i][j][k] = Random(DNAStep)/DNAStep; 
         child[matings[pop+1]][i][j][k] = Random(DNAStep)/DNAStep; 
        } 
       } 
      } 
     } 
     else              // mate pairs of parents 
     { 
      child[matings[pop]] = CrossOver(parent[matings[pop]], 
       parent[matings[pop+1]]); 
      child[matings[pop+1]] = CrossOver(parent[matings[pop+1]], 
       parent[matings[pop]]); 
      if (Hamming(parent[matings[pop]],child[matings[pop+1]]) + 
       Hamming(parent[matings[pop+1]],child[matings[pop]]) < 
       Hamming(parent[matings[pop]],child[matings[pop]]) + 
       Hamming(parent[matings[pop+1]],child[matings[pop+1]])) 
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 // choose closest parents according to hamming distance between individuals 
      { 
       temp = matings[pop]; 
       matings[pop] = matings[pop+1]; 
       matings[pop+1] = temp; 
      } 
     } 
      
     //                      --- EVALUATE POPULATION --- 
      
     // Calculate fitness 
     for (int i = pop; i < pop+2; i++) 
     { 
      name = HouseName; 
      if (DisplayAll) name += gen + "_" + i; 
      if (ActivateEcotect || Photograph) 
       command.Execute("app.busy.update Testing round "+loop+ 
       ", generation "+gen+", individual "+i, driver); 
      ExportBldg(name, (DisplayAll? cs[matings[i]][gen] : cs), 
       child[matings[i]]); 
      df = TestDaylight(DisplayAll? cs[matings[i]][gen] : cs); 
      fitness[matings[i]] = TestLoads(df); // <== FITNESS TESTED HERE 
       
      // Capture image for movie 
      if (Photograph) 
      { 
       command.Execute("set.app.page 2", driver); // bring up openGL 
       if (DisplayAll) 
       { 
        command.Execute("set.opengl.grid.max " + 
         (HouseX*HouseXDiv/2+1500+matings[i]*HouseSpacing) + " " + 
         (HouseY*HouseYDiv/2+1500+gen*HouseSpacing) + " 0", driver); 
                           // set display grid max 
        command.Execute("set.opengl.grid.min " + 
         (-HouseX*HouseXDiv/2-1500+matings[i]*HouseSpacing) + " " + 
         (-HouseY*HouseYDiv/2-1500+gen*HouseSpacing) + " 0", 
         driver);              // set display grid min 
        command.Execute("set.opengl.eyept " + 
         (20000+matings[i]*HouseSpacing) + " " + (gen*HouseSpacing- 
         40000) + " 30000", driver);     // set camera position 
        command.Execute("set.opengl.target " + 
         (matings[i]*HouseSpacing) + " " + (gen*HouseSpacing) + 
         " 6000", driver);          // aim camera 
       } 
       command.Execute("app.busy.close", driver); 
       command.Execute("help.title 0 36 Generation " + gen + 
        ", Individual " + i + ": " + Round(fitness[matings[i]], 3) + 
        " kWh", driver);      // pause time, font size, message 
       command.Execute("opengl.draw.title true", driver); 
                           // switch to 2D drawing 
       for (int dot = 0; dot < fitness[matings[i]]; dot += 50) 
       { 
        command.Execute("opengl.draw.sphere 50 " + (dot+100) + 
         " -100 100", driver); 
                  // x, y, z, radius, from top left corner 
       } 
       command.Execute("movie.addframe", driver); 
       command.Execute("app.busy.open Running genetic algorithm 
        script", driver); 
      } 
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      // Check fitness against closest parent 
      if(fitness[matings[i]] < parentFitness[matings[i]]) 
      { 
       parent[matings[i]] = child[matings[i]]; 
       parentFitness[matings[i]] = fitness[matings[i]]; 
        
       // Collect other data 
       volume[matings[i]] = 0; 
       surfArea[matings[i]] = 0; 
       windowArea[matings[i]] = 0; 
       floorArea[matings[i]] = 0; 
       for (int zone = 1; zone <= HouseXDiv * HouseYDiv; zone++) 
       { 
        command.Request("get.zone.volume " + zone, driver); 
        volume[matings[i]] += ToDouble(command.Result); 
        command.Request("get.zone.exposedarea " + zone, driver); 
        surfArea[matings[i]] += ToDouble(command.Result); 
        command.Request("get.zone.windowarea " + zone, driver); 
        windowArea[matings[i]] += ToDouble(command.Result); 
        command.Request("get.zone.floorarea " + zone, driver); 
        floorArea[matings[i]] += ToDouble(command.Result); 
       } 
        
       // Update best solution found so far 
       if(fitness[matings[i]] < minFit) 
       { 
        minFit = fitness[matings[i]]; 
       } 
      } 
       
      if(fitness[matings[i]] > maxFit) 
      { 
       maxFit = fitness[matings[i]]; 
      } 
     } 
    } 
     
    // Plot fitness of current individual 
    Point fplot = new Point("fplot" + 
     gen).ByCartesianCoordinates(FitnessScaleCS, gen, fitness, 0); 
     
    //                      --- CALCULATE POPULATION DIVERSITY --- 
     
    // Calculate variance of genes in current generation 
    for (int i = 0; i < dna.Count; i++) 
    { 
     for (int j = 0; j < dna[i].Count; j++) 
     { 
      for (int k = 0; k < dna[i][j].Count; k++) 
      { 
       dna[i][j][k] /= GAPopSize;      // mean value of each gene 
       for (int pop = 0; pop < GAPopSize; pop++) 
       { 
        var[i][j][k] += Pow((child[pop][i][j][k] - dna[i][j][k]), 2) 
         / GAPopSize;          // calculation of variance 
       } 
       rmsVar[k] += Pow(var[i][j][k], 2); 
                   // sum for root mean square of variance 
      } 
     } 
    } 
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    // Plot root mean square variance of genes in current generation 
    for (int k = 0; k < rmsVar.Count; k++) 
    { 
     rmsVar[k] = Sqrt(rmsVar[k] / GAPopSize); 
                       // root mean square of variance 
     if(rmsVar[k] > maxVar) 
     { 
      maxVar = rmsVar[k]; 
     } 
     vplot[k][gen] = new Point().ByCartesianCoordinates(VarianceScaleCS, 
      gen, rmsVar[k], 0); 
     varCurve[k] = new PolyLine("Gene" + k).ByVertices(vplot[k]); 
     varCurve[k].Color = k + 1; 
    } 
     
    //                      --- IDENTIFY MOST FIT INDIVIDUAL --- 
     
    sorted = SortIndices(parentFitness, function(x,y){return x<y;}); 
        // return order of fitness from small (good) to large (poor) 
    best = sorted[0]; 
     
    //                      --- WRITE DATA TO FILE --- 
     
    if (ExportData) 
    { 
     lineOut = parentFitness[best] + ","; 
     lineOut += volume[best] + ","; 
     lineOut += surfArea[best] + ","; 
     lineOut += windowArea[best] + ","; 
     lineOut += floorArea[best] + ","; 
     for (int k = 0; k < rmsVar.Count; k++) 
     { 
      lineOut += rmsVar[k] + ","; 
     } 
     for (int i = 0; i < parent[best].Count; i++) 
     { 
      for (int j = 0; j < parent[best][i].Count; j++) 
      { 
       for (int k = 0; k < parent[best][i][j].Count; k++) 
       { 
        lineOut += parent[best][i][j][k] + ","; 
       } 
      } 
     } 
     OpenPrintFile(CurrentDirectory() + "Results\\Data"+RunID+".csv", 
      true); 
     Print(lineOut); 
     ClosePrintFile(); 
    } 
   } 
    
   //                      --- FINISH UP --- 
    
   // Save last population 
   if (ExportData) 
   { 
    OpenPrintFile(CurrentDirectory() + "Results\\Data"+RunID+".csv", 
     true); 
    for (int pop = 1; pop < GAPopSize; pop++) 
    { 
     lineOut = parentFitness[sorted[pop]] + ","; 
     lineOut += volume[sorted[pop]] + ","; 
     lineOut += surfArea[sorted[pop]] + ","; 
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     lineOut += windowArea[sorted[pop]] + ","; 
     lineOut += floorArea[sorted[pop]] + ","; 
     for (int k = 0; k < rmsVar.Count; k++) 
     { 
      lineOut += ","; 
     } 
     for (int i = 0; i < parent[sorted[pop]].Count; i++) 
     { 
      for (int j = 0; j < parent[sorted[pop]][i].Count; j++) 
      { 
       for (int k = 0; k < parent[sorted[pop]][i][j].Count; k++) 
       { 
        lineOut += parent[sorted[pop]][i][j][k] + ","; 
       } 
      } 
     } 
     Print(lineOut); 
    } 
    ClosePrintFile(); 
   } 
   // Save last generation for later analysis 
   if (SaveModels) 
   { 
    for (int pop = 0; pop < GAPopSize; pop++) 
    { 
     double load = SaveModel(pop, parent[sorted[pop]]); 
    } 
   } 
    
   // Update fitness graph axes 
   GAMinFit = Floor(minFit/100) * 100; 
   GAMaxFit = Ceiling(maxFit/100) * 100; 
   //GAMaxVar = Ceiling(maxVar*10) / 10; 
    
   // Save graphs 
   if (Photograph) command.Execute("movie.finish", driver); 
   if (ExportData) 
   { 
    UpdateGraph();     // refresh screen to add points to graphs 
    ImageCapture fitCap = new ImageCapture().CaptureImage(5, 500, 
     CurrentDirectory() + "Results\\", "FitnessPlot", RunID, 
     RenderOption.Wireframe);     // save fitness plot as jpg 
    ImageCapture varCap = new ImageCapture().CaptureImage(6, 500, 
     CurrentDirectory() + "Results\\", "VariancePlot", RunID, 
     RenderOption.Wireframe);     // save variance plot as jpg 
   } 
  }; 
 } 
 feature GeneticAlgorithm GC.GraphFunction 
 { 
  Definition                = function (int loop) 
  { 
   string driver = "";  
   Ecotect command = new Ecotect(); // send commands with this object 
    
   //                      --- VARIABLES FOR GENETIC ALGORITHM --- 
    
   // DNA 
   int keepers = ToInt(GAPopSize * GAKeepRate); 
   double dna = FilledList3d(HouseXDiv, HouseYDiv, HouseParams); 
   double child = FilledList(GAPopSize, dna);   // contains all offspring 
   double parent = FilledList(keepers, dna);   // contains all parents 
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   // Fitness 
   double [][] df;              // daylight factors 
   double fitness = {};           // fitness of each offspring 
   int sorted = {};             // indeces sorted by fitness 
   double minFit = Pow(10,10);   // initialize with a very large number 
   double maxFit = 0; 
   string lineOut;               // output to CSV file 
    
   // Variance 
   double var = dna;              // variance of each gene 
   double rmsVar = {};      // average variance in each generation 
   double maxVar = GAMaxVar.RangeStepSize; 
   PolyLine varCurve = {}; 
   Point vplot = {}; 
   for (int gene = 0; gene < dna[0][0].Count; gene++) 
    vplot[gene] = {};      // second dimension will be generations 
    
   // Data to watch 
   double volume = FilledList(GAPopSize, 0); 
   double surfArea = FilledList(GAPopSize, 0); 
   double windowArea = FilledList(GAPopSize, 0); 
   double floorArea = FilledList(GAPopSize, 0); 
   double sortVolume = {}; 
   double sortSurfArea = {}; 
   double sortWindowArea = {}; 
   double sortFloorArea = {}; 
    
   //                      --- PREPARE OUTPUT FILE --- 
    
   if (ExportData) 
   { 
    lineOut = "Fitness_GA#" + RunID; 
    lineOut += ",Volume_GA#" + RunID; 
    lineOut += ",SurfArea_GA#" + RunID; 
    lineOut += ",WindowArea_GA#" + RunID; 
    lineOut += ",Floor_GA#" + RunID; 
    lineOut += ",ZVar_GA#" + RunID; 
    lineOut += ",XVar_GA#" + RunID; 
    lineOut += ",YVar_GA#" + RunID; 
    lineOut += ",TVar_GA#" + RunID; 
    lineOut += ",SVar_GA#" + RunID; 
    lineOut += ",WVar_GA#" + RunID; 
    lineOut += ",NVar_GA#" + RunID; 
    lineOut += ",EVar_GA#" + RunID; 
    lineOut += ",VVar_GA#" + RunID; 
    lineOut += ",DNA_" + dna.Count + "x" + dna[0].Count + "x" + 
     dna[0][0].Count; 
    lineOut += "," + ZoneClimate; 
    OpenPrintFile(CurrentDirectory() + "Results\\Data"+RunID+".csv"); 
    Print(lineOut); 
    ClosePrintFile(); 
   } 
   if (Photograph) 
   { 
    command.Execute("set.movie.type jpg", driver); 
    command.Execute("movie.record " + CurrentDirectory() + 
     "Results\\Movie" + RunID + ".jpg", driver); 
   } 
    
   //                      --- PREPARE COORDINATE SYSTEM --- 
    
   string name; 
   CoordinateSystem cs; 
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   if (DisplayAll) 
   { 
    cs = new CoordinateSystem("CSgrid");    // create grid of houses 
    cs.Replication = ReplicationOption.AllCombinations; 
    cs.ByCartesianCoordinates(baseCS, 
     Series(0, (GAPopSize-1)*HouseSpacing, HouseSpacing), 
     Series(0, (GAGenerations-1)*HouseSpacing, HouseSpacing), 0); 
    cs.Visible = false; 
   } 
   else 
   { 
    cs = baseCS;             // build all houses at same point 
   } 
    
   //                      --- CREATE POPULATION --- 
    
   for (int gen = 0; gen < GAGenerations; gen++) 
   { 
    // accumulate gene sums in dna array to measure variance 
    dna = FilledList3d(dna.Count, dna[0].Count, dna[0][0].Count, 0); 
    var = FilledList3d(dna.Count, dna[0].Count, dna[0][0].Count, 0); 
    rmsVar = FilledList(dna[0][0].Count, 0); 
     
    for (int pop = 0; pop < GAPopSize; pop++) 
    { 
     // Create individual's DNA 
     if (gen == 0)        // create new starting population 
     { 
      for (int i = 0; i < child[pop].Count; i++) 
      { 
       for (int j = 0; j < child[pop][i].Count; j++) 
       { 
        for (int k = 0; k < child[pop][i][j].Count; k++) 
        { 
         child[pop][i][j][k] = Random(DNAStep)/DNAStep; 
        } 
       } 
      } 
     } 
     else if (pop < keepers)  // retain best from previous generation 
     { 
      child[pop] = parent[pop]; 
      /*if (DisplayAll)    // option to display previously tested 
      {            // houses that advance to next generation 
       name = HouseName + gen + "_" + pop; 
       Polygon bldg = new Polygon(name).ByFunction(makeBuilding, 
        {cs[pop][gen], HouseX, HouseY, HouseZ, HouseXDiv, HouseYDiv, 
        HouseZMin, DNAStep, child[pop]}); 
      }*/ 
     } 
     else 
     { 
      child[pop] = CrossOver(parent[Random(keepers)], 
       parent[Random(keepers)]); 
     } 
      
     //                      --- EVALUATE POPULATION --- 
      
     // Calculate fitness 
     if (gen == 0 || pop >= keepers) 
               // fitness not yet found for current individual 
     { 
      name = HouseName; 
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      if (DisplayAll) name += gen + "_" + pop; 
      if (ActivateEcotect || Photograph) 
       command.Execute("app.busy.update Testing round "+loop+ 
       ", generation "+gen+", individual "+pop, driver); 
      ExportBldg(name, (DisplayAll? cs[pop][gen] : cs), child[pop]); 
      df = TestDaylight(DisplayAll? cs[pop][gen] : cs); 
      fitness[pop] = TestLoads(df);     // <== FITNESS TESTED HERE 
       
      // Capture image for movie 
      if (Photograph) 
      { 
       command.Execute("set.app.page 2", driver); // bring up openGL 
       if (DisplayAll) 
       { 
        command.Execute("set.opengl.grid.max " + 
         (HouseX*HouseXDiv/2+1500+pop*HouseSpacing) + " " + 
         (HouseY*HouseYDiv/2+1500+gen*HouseSpacing) + " 0", driver); 
                           // set display grid max 
        command.Execute("set.opengl.grid.min " + 
         (-HouseX*HouseXDiv/2-1500+pop*HouseSpacing) + " " + 
         (-HouseY*HouseYDiv/2-1500+gen*HouseSpacing) + " 0",  
         driver);              // set display grid min 
        command.Execute("set.opengl.eyept " + 
         (20000+pop*HouseSpacing) + " " + (gen*HouseSpacing-40000) + 
         " 30000", driver);         // set camera position 
        command.Execute("set.opengl.target " + (pop*HouseSpacing) + 
         " " + (gen*HouseSpacing) + " 6000", driver); // aim camera 
       } 
       command.Execute("app.busy.close", driver); 
       command.Execute("help.title 0 36 Generation " + gen + 
        ", Individual " + pop + ": " + Round(fitness[pop], 3) + 
        " kWh", driver);      // pause time, font size, message 
       command.Execute("opengl.draw.title true", driver); 
                           // switch to 2D drawing 
       for (int dot = 0; dot < fitness[pop]; dot += 50) 
       { 
        command.Execute("opengl.draw.sphere 50 " + (dot+100) + 
        " -100 100", driver);                    
                  // x, y, z, radius, from top left corner 
       } 
       command.Execute("movie.addframe", driver); 
       command.Execute("app.busy.open Running genetic algorithm   
        script", driver); 
      } 
                    
      // Update best solution found so far 
      if(fitness[pop] < minFit) 
      { 
       minFit = fitness[pop]; 
      } 
      if(fitness[pop] > maxFit) 
      { 
       maxFit = fitness[pop]; 
      } 
       
      // Collect other data 
      for (int zone = 1; zone <= HouseXDiv * HouseYDiv; zone++) 
      { 
       command.Request("get.zone.volume " + zone, driver); 
       volume[pop] += ToDouble(command.Result); 
       command.Request("get.zone.exposedarea " + zone, driver); 
       surfArea[pop] += ToDouble(command.Result); 
       command.Request("get.zone.windowarea " + zone, driver); 
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       windowArea[pop] += ToDouble(command.Result); 
       command.Request("get.zone.floorarea " + zone, driver); 
       floorArea[pop] += ToDouble(command.Result); 
      } 
     } 
    } 
     
    // Plot fitness of current individual 
    Point fplot = new Point("fplot" + 
     gen).ByCartesianCoordinates(FitnessScaleCS, gen, fitness, 0); 
     
    //                      --- CALCULATE POPULATION DIVERSITY --- 
     
    // Calculate variance of genes in current generation 
    for (int i = 0; i < dna.Count; i++) 
    { 
     for (int j = 0; j < dna[i].Count; j++) 
     { 
      for (int k = 0; k < dna[i][j].Count; k++) 
      { 
       dna[i][j][k] /= GAPopSize; 
      // this is now the mean value of each gene in current population 
       for (int pop = 0; pop < GAPopSize; pop++) 
       { 
        var[i][j][k] += Pow((child[pop][i][j][k] - dna[i][j][k]), 2) 
         / GAPopSize;          // calculation of variance 
       } 
       rmsVar[k] += Pow(var[i][j][k], 2); 
                   // sum for root mean square of variance 
      } 
     } 
    } 
     
    // Plot root mean square variance of genes in current generation 
    for (int k = 0; k < rmsVar.Count; k++) 
    { 
     rmsVar[k] = Sqrt(rmsVar[k] / GAPopSize); 
                       // root mean square of variance 
     if(rmsVar[k] > maxVar) 
     { 
      maxVar = rmsVar[k]; 
     } 
     vplot[k][gen] = new Point().ByCartesianCoordinates(VarianceScaleCS,
      gen, rmsVar[k], 0); 
     varCurve[k] = new PolyLine("Gene" + k).ByVertices(vplot[k]); 
     varCurve[k].Color = k + 1; 
    } 
     
    //                      --- SORT POPULATION BY FITNESS --- 
     
    sorted = SortIndices(fitness, function(x,y){return x<y;}); 
        // return order of fitness from small (good) to large (poor) 
    sortVolume = volume; 
    sortSurfArea = surfArea; 
    sortWindowArea = windowArea; 
    sortFloorArea = floorArea; 
    volume = FilledList(GAPopSize, 0); 
    surfArea = FilledList(GAPopSize, 0); 
    windowArea = FilledList(GAPopSize, 0); 
    floorArea = FilledList(GAPopSize, 0); 
    for (int i = 0; i < keepers; i++) 
    { 
     parent[i] = child[sorted[i]]; 
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     volume[i] = sortVolume[sorted[i]]; 
     surfArea[i] = sortSurfArea[sorted[i]]; 
     windowArea[i] = sortWindowArea[sorted[i]]; 
     floorArea[i] = sortFloorArea[sorted[i]]; 
    } 
    fitness = Sort(fitness, function(x,y){return x<y;}); 
      // reorder fitness results to match ordering of parent population 
     
    //                      --- WRITE DATA TO FILE --- 
     
    if (ExportData) 
    { 
     lineOut = fitness[0] + ","; 
     lineOut += volume[0] + ","; 
     lineOut += surfArea[0] + ","; 
     lineOut += windowArea[0] + ","; 
     lineOut += floorArea[0] + ","; 
     for (int k = 0; k < rmsVar.Count; k++) 
     { 
      lineOut += rmsVar[k] + ","; 
     } 
     for (int i = 0; i < parent[0].Count; i++) 
     { 
      for (int j = 0; j < parent[0][i].Count; j++) 
      { 
       for (int k = 0; k < parent[0][i][j].Count; k++) 
       { 
        lineOut += parent[0][i][j][k] + ","; 
       } 
      } 
     } 
     OpenPrintFile(CurrentDirectory() + "Results\\Data"+RunID+".csv", 
      true); 
     Print(lineOut); 
     ClosePrintFile(); 
    } 
   } 
    
   //                      --- FINISH UP --- 
    
   // Save last population 
   if (ExportData) 
   { 
    OpenPrintFile(CurrentDirectory() + "Results\\Data"+RunID+".csv", 
     true); 
    for (int pop = 1; pop < keepers; pop++) 
    { 
     lineOut = fitness[pop] + ","; 
     lineOut += volume[pop] + ","; 
     lineOut += surfArea[pop] + ","; 
     lineOut += windowArea[pop] + ","; 
     lineOut += floorArea[pop] + ","; 
     for (int k = 0; k < rmsVar.Count; k++) 
     { 
      lineOut += ","; 
     } 
     for (int i = 0; i < parent[pop].Count; i++) 
     { 
      for (int j = 0; j < parent[pop][i].Count; j++) 
      { 
       for (int k = 0; k < parent[pop][i][j].Count; k++) 
       { 
        lineOut += parent[pop][i][j][k] + ","; 
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       } 
      } 
     } 
     Print(lineOut); 
    } 
    ClosePrintFile(); 
   } 
   // Save last generation for later analysis 
   if (SaveModels) 
   { 
    for (int pop = 0; pop < keepers; pop++) 
    { 
     double load = SaveModel(pop, parent[pop]); 
    } 
   } 
    
   // Update fitness graph axes 
   GAMinFit = Floor(minFit/100) * 100; 
   GAMaxFit = Ceiling(maxFit/100) * 100; 
   //GAMaxVar = Ceiling(maxVar*10) / 10; 
    
   // Save graphs 
   if (Photograph) command.Execute("movie.finish", driver); 
   if (ExportData) 
   { 
    UpdateGraph();     // refresh screen to add points to graphs 
    ImageCapture fitCap = new ImageCapture().CaptureImage(5, 500, 
     CurrentDirectory() + "Results\\", "FitnessPlot", RunID, 
     RenderOption.Wireframe);      // save fitness plot as jpg 
    ImageCapture varCap = new ImageCapture().CaptureImage(6, 500, 
     CurrentDirectory() + "Results\\", "VariancePlot", RunID, 
     RenderOption.Wireframe);      // save variance plot as jpg 
   } 
  }; 
 } 
 feature Hamming GC.GraphFunction 
 { 
  Definition                = int function (double [][][] parent, 
                double [][][] child) 
  { 
   int hamming = 0; 
   for (int i = 0; i < child.Count; i++) 
   { 
    for (int j = 0; j < child[i].Count; j++) 
    { 
     for (int k = 0; k < child[i][j].Count; k++) 
     { 
      hamming += DNAStep * Abs(parent[i][j][k] - child[i][j][k]); 
     } 
    } 
   } 
   return hamming; 
  }; 
 } 
 feature SaveModel GC.GraphFunction 
 { 
  Definition                = double function (int pop, double [][][] dna) 
  { 
   // Connect to Ecotect 
   string driver = ""; 
   Ecotect command = new Ecotect(); // send commands with this object 
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   // Bring up model in Ecotect 
   if (ActivateEcotect || Photograph) 
    command.Execute("app.busy.update Recreating individual " + pop, 
    driver); 
   ExportBldg(HouseName, baseCS, dna); 
   double [][] daylightFactor = TestDaylight(baseCS); 
   double load = TestLoads(daylightFactor); 
    
   // Save data from Ecotect 
   command.Execute("calc.thermal.loads", driver); 
   command.Execute("graph.save.bmp " + CurrentDirectory() + 
    "Results\\Graph" + RunID + "_" + pop + ".bmp", driver); 
                          // save analysis image 
   command.Execute("graph.save.results " + CurrentDirectory() + 
    "Results\\Graph" + RunID + "_" + pop + ".csv", driver); 
                              // save data file 
   command.Execute("model.dump " + CurrentDirectory() + "Results\\Model" + 
    RunID + "_" + pop + ".eco", driver);        // save model 
   return load; 
  }; 
 } 
} 
 

Following the functions that carry out the GA is a script that allows the user to 

run the GA.  The user can specify the number of times to run the GA through a dialog 

box. 

 
transaction script "Run Genetic Algorithm" 
{ 
 int loops = Ask("Number of times to repeat algorithm:"); 
 if (loops != null) 
 { 
  int rid = Random(100000 - loops); 
  ShowMessageBox("Running the genetic algorithm may take a while"); 
   
  string driver = ""; 
  Ecotect command = new Ecotect(); // send commands with this object 
   
  // Bring Ecotect window to front 
  command.Execute("script.start", driver); 
  if (ActivateEcotect || Photograph) 
  { 
   command.Execute("app.activate", driver); 
   command.Execute("app.minimise false", driver); 
   command.Execute("app.busy.open Running genetic algorithm script", 
    driver); 
  } 
  else 
  { 
   command.Execute("app.minimise true", driver); 
  } 
   
  // Run algorithm 
  for (int i = 0; i < loops; i++) 
  { 
   GraphVariable RunID = new 
    GraphVariable("RunID").EvaluateExpression(rid+i); 
   if (DetCrowding) 
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   { 
    DeterministicCrowding(i); 
   } 
   else 
   { 
    GeneticAlgorithm(i); 
   } 
   if (Photograph && !ActivateEcotect) 
   { 
    command.Execute("app.busy.close", driver); 
    command.Execute("app.minimise true", driver); 
    Photograph = false;        // Only photograph on first run 
   } 
  } 
   
  // Minimize Ecotect 
  if (ActivateEcotect || Photograph) 
  { 
   command.Execute("app.busy.close", driver); 
   command.Execute("app.minimise true", driver); 
  } 
  command.Execute("script.end", driver); 
  if (ExportData) ShowMessageBox("Finished running the genetic algorithm. 
   Data is saved."); 
 } 
} 
 

If the algorithm saved Ecotect models of the fittest houses, a copy of the last 

one will still be in GC model space.  Before saving images of the population, this copy 

is removed with the next transaction. 

 
transaction modelBased "Delete FinalHouse" 
{ 
 deleteFeature FinalHouse; 
} 
 

Finally, a tranaction that captures screen images of the model in GC is 

available.  This transaction may be replayed an unlimited number of times in order to 

take additional pictures. 

 
transaction modelBased "Save Model Frame" 
{ 
 feature imageCaptureBest GC.ImageCapture 
 { 
  ViewNumber                = 2; 
  ImageHeight               = 1000; 
  DirectoryPath             = CurrentDirectory() + "Results\\"; 
  ImageFileSeedName         = AskString("Name of image:"); 
  StartFrame                = RunID; 
 } 
} 
 



 

149 

REFERENCES 

 
Autodesk and the American Institute of Architects.  The 2008 Autodesk/AIA Green 

Index.  Chicago:  StrategyOne, 2008. 

Axelrod, Robert.  The Evolution of Cooperation.  New York:  Basic Books, 1984. 

Beinhocker, Eric D.  The Origin of Wealth.  Boston:  Harvard Business School Press, 
2007. 

Borges, Jorge Luis.  “The Library of Babel.”  Labyrinths:  Selected Stories and Other 
Writings.  Trans. James E. Irby.  New York:  New Directions Publishing 
Company, 1962.  51-58. 

Carranza, Pablo Miranda.  Self-Designed Structures.  Prototype 1.  1 June 2005.  
Army of Clerks.  23 February 2008.  
<http://armyofclerks.net/SelfDesign/SelfDesignedStructures.pdf>. 

De Biswas, Kaustuv.  GC Ecotect Link.  4 February 2008.  Kaustuv De Biswas.  17 
December 2008.  
<http://web.mit.edu/kkdb/www/newhome/generative/index.html>. 

Ecotect:  An Overview.  2008.  Autodesk.  17 December 2008.  
<http://ecotect.com/products/ecotect>. 

Epstein, Joshua M. and Robert Axtell.  Growing Artificial Societies:  Social Science 
from the Bottom Up.  Cambridge:  The MIT Press, 1996. 

Gell-Mann, Murray.  The Quark and the Jaguar:  Adventures in the Simple and the 
Complex.  New York:  Henry Holt and Company, LLC, 1994. 

GenerativeComponents.  Bently Systems, Incorporated.  17 December 2008.  
<http://www.bentley.com/en-US/Markets/Building/GenerativeComponents/>. 

Goldberg, David E., Kalyanmoy Deb and Bradley Korb.  “Messy Genetic Algorithms 
Revisited:  Studies in Mixed Size and Scale.”  Complex Systems.  4 (1990):  
415-444. 

Goodwin, Brian.  How the Leopard Changed Its Spots:  The Evolution of Complexity.  
Princeton:  Princeton University Press, 1994. 

Holland, John H.  Hidden Order:  How Adaptation Builds Complexity.  New York:  
Perseus Books, 1995. 



 

150 

Jacob, François.  “Evolution and Tinkering.”  Science.  196.4295 (10 June 1977):  
1161-1166. 

Kauffman, Stuart.  The Origins of Order:  Self-Organization and Selection in 
Evolution.  Oxford:  Oxford University Press, 1993. 

Koza, John R.  Genetic Programming:  On the Programming of Computers by Means 
of Natural Selection.  Cambridge:  The MIT Press, 1992. 

Kwinter, Sanford and Umberto Boccioni.  “Landscapes of Change:  Boccioni’s ‘Stati 
d’animo’ as a General Theory of Models.”  Assemblage.  19 (Dec. 1992):  50-
65. 

LEED for New Construction.  2008.  U.S. Green Building Council.  17 December 
2008.  <http://www.usgbc.org/DisplayPage.aspx?CMSPageID=220>. 

Lewin, Roger.  Complexity:  Life at the Edge of Chaos.  Chicago:  The University of 
Chicago Press, 1992. 

Miller, John H. and Scott E. Page.  Complex Adaptive Systems:  An Introduction to 
Computational Models of Social Life.  Princeton:  Princeton University Press, 
2007. 

SmartGeometry 2008 Conference.  2008.  SmartGeometry.  17 December 2008.  
<http://www.smartgeometry2008.com/alumni.asp>. 

Thompson, D’Arcy Wentworth.  On Growth and Form:  The Complete Revised 
Edition.  New York:  Dover Publications, Inc., 1992. 

Waldrop, M. Mitchell.  Complexity:  The Emerging Science at the Edge of Order and 
Chaos.  New York:  Simon & Schuster, 1992. 

Wiscombe, Tom.  EMERGENT.  15 January 2009.  EMERGENT.  29 January 2009.  
<http://www.emergentarchitecture.com/>. 

Wright, Frank Lloyd.  “The Art and Craft of the Machine.”  Rethinking Technology:  
A Reader in Architectural Theory.  Ed. William W. Braham, John Stanislav 
Sadar, and Jonathan Hale.  New York:  Routledge, 2006.  1-16. 

Wright, Sewall.  “The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in 
Evolution.”  Proceedings of the Sixth International Congress of Genetics.  2 
vols.  Ed. Donald F. Jones.  Menasha, Wisconsin:  Brooklyn Botanical 
Gardens, 1932.  356-366. 


	Title Page
	Approval
	Abstract
	Biographical Sketch
	Acknowledgments
	Table of Contents
	List of Figures
	List of Abbreviations
	Preface
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix A
	Appendix B
	Appendix C
	References



