

# Lab Hazard Mitigation with User-Centric CFD Analysis

Nathaniel Jones, PhD



I<sup>2</sup>SL Annual Conference and Technology Fair 18 October 2022



# What does it mean to design good *indoor air quality* for a lab?

## A better HVAC system?







#### Low emission materials?





Brain and Cognitive Science Center, Cambridge, Massachusetts

# Monitoring?









## Designing indoor air quality for labs













## Space use



*Case study* Lab benches that create cleaner air



## Air circulation for a lab bench









# Air speed







# Turbulence intensity Uh oh







# Age of air











## Rethink

# Air speed









## Turbulence intensity





# Age of air





1 minute





#### Space use



*Case study* Chemical containment in a teaching lab





## ASHRAE 110





#### **Face velocity**

An anemometer is placed at points on a rectangular grid roughly 1 foot apart over the sash opening.

#### **Tracer gas test**

A tracer gas is released in the fume hood. The concentration is measured in the breathing zone and periphery.



#### **Flow visualization**

Smoke released in the fume hood should be carried smoothly to the fume hood exhaust.

# Trust but verify

**Face velocity** 





# Trust but verify

**Face velocity** 





# Trust but verify

#### Tracer gas test

Isosurface for 1% of mean internal concentration



but still contained!

# Trust but verify

#### Flow visualization

0 fpm





#### Modified



Original





# Modified layout

#### Flow visualization

0 fpm





## Occupants





- Low emission materials
- Monitoring



Occupants



Schlieren videos of breathing and coughing, from Bauhaus-Universität Weimar <u>https://vimeo.com/399120258</u> (Colorized by Arup)



## Ultraviolet germicidal irradiance (UVGI)







## COVID-19

#### **Upper-room ultraviolet germicidal irradiance (UVGI)**



Jones *et al.*, 2021. *Simulation of COVID-19 ultraviolet disinfection using coupled ray tracing and CFD*. Building Simulation 2021.



## Modified Wells-Riley



**Risk of Infection** 

Jones et al., 2021. Simulation of COVID-19 ultraviolet disinfection using coupled ray tracing and CFD. Building Simulation 2021.

Time (hr)













5-minute average concentration experienced by Person 24





#### Occupants



Digression Where did our "scientific" basis for thermal comfort come from?



Parkinson et al., 2021. Overcooling of Offices Reveals Gender Inequality in Thermal Comfort. Scientific Reports.

Age



Soebarto *et al.*, 2019. *A thermal comfort environmental chamber study of older and younger people*. Building and Environment.



Parkinson *et al.*, 2020. *Nudging the adaptive thermal comfort model*. Energy and Buildings 206.





Nicol, Humphreys, and Roaf. Adaptive thermal comfort: principles and practice. London: Routledge; 2012.



| Source          | Height<br>(cm) | Weight<br>(kg) | <b>Fat</b> (%) |
|-----------------|----------------|----------------|----------------|
| Stolwijk (1971) | 172            | 74.1           | 15             |



2005-2006 and 2015-2016 National Health and Nutrition Examination Survey, Centers for Disease Control



#### comfort.arup.com



Zhang, *et al.* 2010. Thermal sensation and comfort models for non-uniform and transient environments. *Building and Environment*, 45(2).

Takahashi *et al.*, 2021. Thermoregulation model JOS-3 with new open source code. *Energy and Buildings* 231.

Jones *et al.*, 2021. *Predicting thermal comfort for diverse populations*. Building Simulation 2021.



#### Thermal Comfort of "Standard Man"



#### Population Thermal Comfort







## Designing indoor air quality for lab occupants















